Skip to main content
Log in

The use of the differential sphygmogram of the radial artery for estimating the pumping function of the heart

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

A study was performed to evaluate the effectiveness of mathematical algorithms for calculating the volume and velocity parameters of hemodynamics from relationships obtained in the model of fluid flow under the conditions of increased fluidity (Poedintsev’s model). Numerical calculations were based on the duration of phases of the cardiac cycle as determined from velocity and acceleration sphygmograms (SPGs) recorded in the radial artery. The measurement error of the volume and velocity parameters of the cardiovascular system function and regulation was estimated. The findings allow the methods of both contour and time analyses to be extrapolated from curves measured in the region of the heart and aortic ostium (kinetocardiogram, carotid SPG) to the radial SPG, making these methods much simpler and less burdensome for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Instrumental’nye metody issledovaniya serdechnososudistoi sistemy: spravochnik (Instrumental Methods Used in Examinations of the Cardiovascular System: A Handbook), Moscow: Meditsina, 1986.

  2. Blumberger, K., Die Anspannungszeit und Austreibungszeit beim Menschen, Arch. Kreislaufforsch., 1940, vol. 6, p. 203.

    Article  Google Scholar 

  3. Karpman, V.L., Fazovyi analiz serdechnoi deyatel’nosti (Phase Analysis of Cardiac Activity), Moscow: Meditsina, 1965.

    Google Scholar 

  4. Kulikov, Yu.A. and Safonov, Yu.D., Penetrating Microwave Cardiography and Its Diagnostic Potential, in Elektronika i khimiya v kardiologii (Electronics and Chemistry in Cardiology), Voronezh: Voron. Gos. Univ., 1976, iss. 9, p. 18.

    Google Scholar 

  5. Kulikov, Yu.A., Specific Features and Principles of Analysis of the Phase Structure of Cardiac Cycle on the Basis of Penetrating Microwave Cardiograms, in Elektronika i khimiya v kardiologii (Electronics and Chemistry in Cardiology), Voronezh: Voron. Gos. Univ., 1978, iss. 10, p. 35.

    Google Scholar 

  6. Andreev, L.B. and Andreeva, N.B., Kardiografiya (Cardiography), Rostov-on-Don: Rostov. Gos. Univ., 1971.

    Google Scholar 

  7. Poedintsev, G.M., On the Mode of Blood Flow in Blood Vessels, in Razvitie novykh neinvazivnykh metodov issledovaniya v kardiokogii (Development of New Noninvasive Testing Methods in Cardiology), Voronezh, 1983, p. 16.

  8. Zakharov, V.N., Structural Analysis of Moving Blood from Viewpoint of New Principles of Circulation Mechanics, J. Cardiovasc. Surg., 1994, vol. 35, no. 1, p. 19.

    CAS  Google Scholar 

  9. Zakharov, V.N., Phenomenon of Concentrical Spiral Separation of Microparticles in Laminar Votical Blood Flow, J. Cardiovasc. Surg., 1995, vol. 36, no. 5, p. 475.

    CAS  Google Scholar 

  10. Chizhevskii, A.L., Strukturnyi analiz dvizhushcheisya krovi (Structural Analysis of Moving Blood), Moscow: Akad. Nauk SSSR, 1959.

    Google Scholar 

  11. Poedintsev, G.M., Some Principles of Mathematical Simulation of Biological Systems and Estimation Criteria of Their Adequacy, in Meditsinskie informatsionnye sistemy: Mezhvedomstvennyi tematicheskii nauchnyi sbornik (Medical Information Systems: Interdisciplinary Research Collection), Taganrog: TRTI, 1988, issue 1(VIII), p. 113.

    Google Scholar 

  12. Strumskite, O.K., Mathematical Approaches for Determining Cardiac Output, Stroke Volume, and Phase Volume of the Heart in Accordance with the Duration of Phases of Cardiac Cycle, in Razvitie novykh neinvazivnykh metodov issledovaniya v kardiologii (Development of New Noninvasive Methods in Cardiology), Voronezh, 1983, p. 16.

  13. Tsydypov, Ch.Ts., Boronoev, V.V., Pupyshev, V.N., and Trubachev, E.A., Issues of Objectization of Pulse Diagnosis of Tibetan Medicine, in Mezhdunarodnyi seminar po ispol’zovaniyu komp’yuterov v tibetskoi meditsine: Tibetskaya meditsina (istoriya, metodologiya izucheniya i perspektivy ispol’zovaniya) (Int. Workshop on the Use of Computers in Tibetan Medicine: Tibetan Medicine (History, Methods of Study, and Aspects of Application), Ulan-Ude, 1989, p. 24.

  14. Savitskii, N.N., Nekotorye metody issledovaniya i klinicheskie metody izucheniya gemodinamiki (Some Methods of Investigation and Functional Assessment of Circulatory System), Leningrad: Med. Lit., 1956.

    Google Scholar 

  15. Savitskii, N.N., Biophysical Principles of Circulation and Clinical Methods for Studying Hemodynamics, Leningrad: Medgiz, 1963.

    Google Scholar 

  16. Parin, V.V. and Baevskii, R.M., Vvedenie v meditsinskuyu kibernetiku (Introduction into Medical Cybernatics), Moscow: Meditsina, 1966.

    Google Scholar 

  17. Kaevitser, I.M., Differential Curves of Pulse and Some Patterns of Pulse Wave Velocity during Normal and Impaired Hemodynamics, Extended Abstract of Cand. Sci. (Med.) Dissertation, Moscow, 1971.

  18. Pressman, L.P., Klinicheskaya sfigmografiya (Clinical Sphygmography), Moscow: Meditsina, 1974.

    Google Scholar 

  19. Valtneris, A.D. and Yauya, Ya.A., Sfigmografiya kak metod otsenki izmenenii gemodinamiki pod vliyaniem fizicheskoi nagruzki (Sphygmography as a Method for Assessing Hemodynamic Changes Caused by Physical Exercise), Riga: Zinatne, 1988.

    Google Scholar 

  20. Kaevitser, I.M., Differential Curves of Carotid and Jugular Pulses in Healthy Subjects and during Some Heart Diseases, Kardiol., 1968, no. 5, p. 81.

  21. Warembourg, H., Ducloux, G., and Merlen, J.F., Lf Derivee Premiere du Piezogramm Carotidien Normal, Arch. Mal. Coeur., 1969, vol. 62, p. 511.

    PubMed  CAS  Google Scholar 

  22. Symonyi, J., Kiss, E., and Kenez, B.A., Carotis sphygmogramm elso derivaltjanak lefutaza es alakja egeszsegeseknel es szivbetegeknel. A. Carotis-sphygmogramm masodek derivaltja nak klinikai alkalma-zasa, Magyar Belorvozi Arch., 1968, no. 4, p. 191.

  23. Grassi, T., Nuova interpretazione e nuove possibilita diagnostiche dell’oscillogramma arterioso periferico, Minerva Cardiol., 1961, vol. 9, no. 8, p. 447.

    CAS  Google Scholar 

  24. Paleev, N.P. and Kaevitser, I.M., Atlas gemodinamicheskikh issledovanii v klinike vnutrennikh boleznei: beskrovnye metody (Atlas of Hemodynamic Studies for Internal Diseases: Noninvasive Methods), Moscow: Meditsina, 1975.

    Google Scholar 

  25. Azargaev, L.N., Boronoev, V.V., and Shabanova, E.V., Comparative Analysis of Sphygmograms of the Carotid and Radial Arteries, Fiziol. Chel., 1997, vol. 23, no. 5, p. 67 [Hum. Physiol. (Eng. Transl.), 1997, vol. 23, no. 5, p. 567].

    Google Scholar 

  26. Lishchuk, V.A., Matematicheskaya teoriya krovoobrashcheniya (Mathematical Theory of Blood Circulation), Moscow: Meditsina, 1991.

    Google Scholar 

  27. Azargaev, L.N., Boronoev, V.V., Poplaukhin, V.N., and Storchun, E.V., RF Patent 2085111, 1997, RB no. 21.

  28. An Automated Pulse Diagnosis System of Tibetan Medicine (APDK). Brand Name “Tibet”, in Vazhneishie zakonchennye nauchno-issledovatel’skie i opytno-konstruktorskie raboty institutov Sibirskogo otdeleniya RAN (The Most Important Research and Development Projects Completed in the Institutes of the Siberian Division of the Russian Academy of Sciences), Novosibirsk: Siberian Division of the Russian Academy of Sciences, 1996, p. 300.

  29. “Chzhud-shi”—pamyatnik srednevekovoi tibetskoi kul’tury (“Chzhud-shi”, a Monument of the Medieval Tibetan Culture), Novosibirsk: Nauka, 1987.

  30. Pupyshev, V.N., Tibetskaya meditsina: yazyk, teoriya, praktika (Tibetan Medicine: Language, Theory, and Practice), Novosibirsk: Nauka, 1991.

    Google Scholar 

  31. Orlov, V.V., Pletizmografiya (Plethysmography), Moscow: Meditsina, 1970.

    Google Scholar 

  32. Avetikyan, Sh.T., Duration of Uprise-Injure Intervals of Arterial Pulse in Central and Peripheral Vascular Regions during Different Positions in Humans, Fiziol. Chel., 1984, vol. 10, no. 2, p. 276.

    Google Scholar 

  33. Boronoev, V.V. and Rinchinov, O.S., Spline-Approximation Methods for Amplitude-Time Analysis of Pulse Wave, Izv. VYZ. Radiofiz., 1988, vol. XLI, no. 8, p. 1043.

    Google Scholar 

  34. Kulikov, Yu.A., Volume Parameters of Central Hemodynamics As Determined by the Analysis of Phase Structure of Cardiac Cycle, in Razvitie novykh neinvazivnykh metodov issledovaniya v kardiokogii (Development of New Noninvasive Methods in Cardiology), Voronezh, 1983, p. 49.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.N. Azargaev, V.V. Boronoev, 2007, published in Fiziologiya Cheloveka, 2007, Vol. 33, No. 5, pp. 63–73.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azargaev, L.N., Boronoev, V.V. The use of the differential sphygmogram of the radial artery for estimating the pumping function of the heart. Hum Physiol 33, 567–576 (2007). https://doi.org/10.1134/S0362119707050076

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119707050076

Keywords

Navigation