Skip to main content
Log in

Brain bioelectrical activity at a high anxiety level in humans

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Brain bioelectrical activity was studied in 38 and 34 subjects with high and low levels of anxiety, respectively, by means of toposelective mapping of EEG spectral power and recording of P300 endogenous event-related auditory evoked potentials (EPs). Analysis of EEG spectra demonstrated, in the subjects with a high level of trait anxiety, a higher power of β1 oscillations in the central-parietal areas of both hemispheres and the occipital area of the right hemisphere, as well as a higher power of θ and α oscillations in the frontal areas of both hemispheres and the central-parietal area of the left hemisphere. The occipital-frontal gradient of the spectral power of these rhythmic EEG components was altered in subjects with a high level of trait anxiety. Comparison of P300 cognitive auditory EPs in the subjects with high anxiety and in the control group showed that, in the former, the P300 EP amplitude and the habituation distortion (dishabituation) of the P300 EP amplitude were significantly higher in both hemispheres. This indicates that, at a high level of anxiety, the active directed attention was disturbed, which is confirmed by the results of neuropsychological examination, demonstrating reduced selectivity, concentration, and stability of attention in the Münsterberg test and Schulte’s test. The results of electrophysiological examination suggest that the malfunction of regulatory brain modulating systems is an important neurophysiological mechanism of attention pathology and disturbed adaptation in subjects with a high level of trait anxiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McNally, R.J., Information -Processing Abnormalities in Anxiety Dynamics, Cognit. Emot., 1998, vol. 12, p. 479.

    Article  Google Scholar 

  2. Brown, T.A., Chorpita, B.F., and Barlow, D.H., Structural Relationships Among Dimensions of the DSM-IV Anxiety and Dimensions of Negative Affect and Positive Affect, and Autonomic Arousal, J. Abnormal Psychol., 1998, vol. 107, no. 2, p. 179.

    Article  CAS  Google Scholar 

  3. Danilova, N.N., Korshunova, S.G., Sokolov, E.N., and Chernyshenko, E.N., Cardiac Rhythm Dependence on Anxiety as a Stable Individual Characteristic, Zh. Vyssh. Nervn. Deyat., 1995, vol. 45, no. 4, p. 647.

    CAS  Google Scholar 

  4. Savostyanov, A.N. and Savostyanova, D.A., Changes in Brain Electrical Activity during Adaptation to a Verbal Stimulus in Persons with High and Low Levels of Trait Anxiety, Zh. Vyssh. Nervn. Deyat., 2003, vol. 53, no. 3, p. 351.

    Google Scholar 

  5. Anokhin, P.K., Elektoroentsefalograficheskii analiz uslovnogo refleksa, (Electroencephalographic Analysis of Conditional Reflex), Moscow: Medgiz, 1958, 269 p.

    Google Scholar 

  6. Guerrero Figueroa R., Heath, R.G., and Escobar-Juyo, A., Cortico-Subcortical Electrophysiological Study During the Effects of Benzodiazepines in Patients with Panic Disorders, Rev. Neurol., 2001, vol. 32, no. 4, p. 321.

    PubMed  CAS  Google Scholar 

  7. Hanaoka, A., Kikuchi, M., Komuro, R., et al., EEG Coherence Analysis in Never-Medicated Patients with Panic Disorder, Clin. EEG Neurosci., 2005, vol. 36, no. 1, p. 42.

    PubMed  Google Scholar 

  8. Vorob’eva, O.V., General Cerebral Mechanisms of Paroxismal Epileptic and Nonepileptic Disorders, Doctoral (Medicine) Dissertation, Moscow, 2001.

  9. Davidson, R.J., Marshall, J.R., Tomarken, A.J., and Henriques, J.B., While a Phobic Waits: Regulation Brain Electrical and Autonomic Activity in Social Phobics during Anticipation of Public Speaking, Biol. Psychiatry, 2000, vol. 47, no. 2, p. 85.

    Article  PubMed  CAS  Google Scholar 

  10. Kostandov, E.A. and Vazhnova, T.N., Reflection of Decision-Making Process in the Induced Human Cortical Electrical Activity, Zh. Vyssh. Nervn. Deyat., 1976, vol. 26, p. 1123.

    CAS  Google Scholar 

  11. Ivan, A.B. and Polich, J., P300 and Response Time from a Manual Stroop Task, Clin. Neurophysiol., 1999, vol. 110, p. 367.

    Article  Google Scholar 

  12. Hanatani, T., Sumi, N., Taguchi, S., et al., Event-Related Potentials in Panic Disorder and Generalized Anxiety Disorder, Psychiatry Clin. Neurosci., 2005, vol. 59, no. 1, p. 83.

    Article  PubMed  Google Scholar 

  13. Pauli, P., Amrhein, C., Muhlberger, A., et al., Electrocortical Evidence for an Early Abnormal Processing of Panic-Related Words in Panic Disorder Patients, Int. J. Psychophysiol., 2005, vol. 57, no. 1, p. 33.

    Article  PubMed  Google Scholar 

  14. Routtenberg, A., The Two-Arousal Hypothesis: Reticular Formation and Limbic System, Psychol. Reviews, 1968, vol. 75, p. 51.

    Article  CAS  Google Scholar 

  15. Wein, A.M., Dyukova, G.M., Vorob’eva, O.V., and Danilov, A.B., Panicheskie ataki (Panic Attacks), Moscow: Eidos Media, 2004.

    Google Scholar 

  16. Knott, V.J., Bakish, D., and Lusk, S., Quantitative EEG Correlates of Panic Disorder, Psychiatry Res., 1996, vol. 68, no. 1, p. 31.

    Article  PubMed  CAS  Google Scholar 

  17. Il’yuchenok, I.R., Distinctions in EEG Frequency Parameters during Perception of Positive and Negative Emotional Neutral Words, Zh. Vyssh. Nervn. Deyat., 1996, vol. 46, no. 3, p. 457.

    Google Scholar 

  18. Christensen, L., Bourgeois, A., and Cockroft, R., Electroencephalographic Concomitants of a Caffeine-Induced Panic Reaction, J. Nerv. Ment. Dis., 1993, vol. 181, no. 5, p. 327.

    Article  PubMed  CAS  Google Scholar 

  19. Vasilevskii, N.N., Soroko, S.I., and Zingerman, A.M., Psychophysiological Principles of Individual Typological Features of Humans, in Mekhanismy deyatel’nosti mozga cheloveka, (The Mechanisms of Brain Activity in Humans), Bekhtereva, N.P., Ed., Leningrad: Nauka, 1988, p. 455.

    Google Scholar 

  20. Rusinov, V.C., Biopotentsialy mozga cheloveka, (Biopotentials of the Human Brain), Moscow: Meditsina, 1987.

    Google Scholar 

  21. Lopes da Silva, F.N., Neural Mechanisms Underlying Brain Waves: from Neural Membranes to Networks, EEG and Clin. Neurophysiol., 1991, vol. 79, p. 81.

    Article  CAS  Google Scholar 

  22. Menendez, R.G., Morie, P., Picard, F., et al., Simple Techniques for EEG Source Imaging, Int. J. Bioelectromagnetism, 2006, vol. 8, no. 1, p. V/1.

    Google Scholar 

  23. Sadato, N., Nakamura, S., Oohashi, T., et al., Neural Networks for Generation and Suppression of Alpha Rhythm: A PET Study, Neuroreport., 1998, vol. 9, no. 5, p. 893.

    Article  PubMed  CAS  Google Scholar 

  24. Latash, L.P., Gypotalamus, prisposobitel’naya activnost’ i elektroentsefalogramma, (The Hypothalamus, Adaptive Activity, and the Electroencephalogram), Moscow: Nauka, 1968.

    Google Scholar 

  25. Kostandov, E.A., The Role of Cognitive Factors in Emotional Asymmetry of Brain Hemispheres, Zh. Vyssh. Nervn. Deyat., 1990, vol. 40, no. 4, p. 611.

    CAS  Google Scholar 

  26. Goodin, D.S. and Martin, S., P300, Cognitive Capability, and Personality: A Correlational Study of University Undergraduates, Person Individ. Diff., 1992, vol. 21, p. 533.

    Google Scholar 

  27. Naatenen, P., Vnimanie i funktsii mozga, (Attention and Brain Functions), Moscow: MGU, 1998.

    Google Scholar 

  28. Gnezditskii, V.V., Vyzvannye potentsialy mozga v klinicheskoi praktike, (Brain Evoked Potentials in Clinical Practice), Moscow: MEDpress, 2003.

    Google Scholar 

  29. Kharitonov, L.B., Psychophysiological Mechanisms of Disturbances in and Properties and Structure of Sensory Attention at Human Neuroses, Cand. Sc. (Medicine) Dissertation, Kursk, 1996.

  30. Clayton, I.C., Richards, J.C., and Edvards, C.J., Selective Attention in Obsessive-Compulsive Disorders, J. Abnorm. Psychol., 1999, vol. 108, no. 1, p. 171.

    Article  PubMed  CAS  Google Scholar 

  31. Gladjio, J.A., Rapoport, M.N., McKinney, R., et al., Absence of Neuropsychologic Deficits in Patients Receiving Long-Term Treatment with Alprozalam-XR for Panic Disorder, J. Clin. Psychopharmacol., 2001, vol. 21, no. 2, p. 131.

    Article  Google Scholar 

  32. Polich, J. and Squire, L.R., P300 from Amnesic Patients with Bilateral Hippocampal Lesion, EEG Clin. Neurophysiol., 1993, vol. 86, p. 408.

    Article  CAS  Google Scholar 

  33. Kropotov, J.D. and Ponomarev, V.A., Subcortical Neuronal Correlates of Component P300 in Man, EEG Clin. Neurophysiol., 1991, vol. 78, p. 40.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.A. Gordeev, 2007, published in Fiziologiya Cheloveka, 2007, Vol. 33, No. 4, pp. 11–17.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordeev, S.A. Brain bioelectrical activity at a high anxiety level in humans. Hum Physiol 33, 388–393 (2007). https://doi.org/10.1134/S0362119707040020

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119707040020

Keywords

Navigation