Skip to main content
Log in

The role of heat shock proteins in the formation of conflict between the human body and its microflora

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The incidence of endogenous infectious inflammatory diseases has dramatically increased in the population during the past 50 years. The causative agents of these diseases are representatives of the body’s commensal microflora, to which oral tolerance (OT) of the host develops. Disorders of this tolerance promote the development of various infections. The OT can fail as a result of stress factors acting on microorganisms, first of all, unreasonably wide use of antibacterial drugs. On the basis of the results of this study and literature data, it is shown that the abolishment of the body’s tolerance to its commensal microflora and the development of endogenous inflammations, which, in turn, induce allergic, autoimmune, and systemic diseases, are caused by a multiple increase in the level of heat shock proteins on the surface of microorganisms under the influence of stress. The pathogeneses of endogenous inflammatory diseases and therapeutic approaches are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lebedev, K.A. and Ponyakina, I.D., Immunophysiology of Epithelial Cells and Pattern Recognition Receptors, Fiziol. Chel., 2006, vol. 32, no. 2, p. 224 [Hum. Physiol. (Engl. Transl.), 2006, vol. 32, no. 2, p. 224].

    Google Scholar 

  2. Bourlioux, P., Koletzko, B., Guarner, F., and Braesco, V., The Intestine and Its Microflora Are Partners for the Protection of the Host, Am. J. Clin. Nutrition, 2003, vol. 78, no. 4. p. 675.

    CAS  Google Scholar 

  3. Ivanov, V.S., Zabolevaniya parodonta (Periodontium Diseases), Moscow: MIA, 2001.

    Google Scholar 

  4. Brandtzaer, P., Current Understanding of Gastrointestinal Immunoregulation and Its Relation to Food Allergy, Ann. N.Y. Acad. Sci., 2002, vol. 964. p. 13.

    Google Scholar 

  5. Garside, P. and McMowat, A.I. Oral Tolerance in Disease, GUT, 1999, vol. 44, p. 137.

    PubMed  CAS  Google Scholar 

  6. Smith, K.M., Eaton, A.D., Finlayson, L.M., et al., Oral Tolerance, Am. J. Respir. Crit. Care Med., 2000, vol. 162, no. 4, p. 343.

    Google Scholar 

  7. Lebedev, K.A., Impairment of the Tolerance of an Organism to Its Own Microflora Is a Kind of Immune Pathology, Fiziol. Chel., 2003, vol. 29, no. 2, p. 138 [Hum. Physiol. (Engl. Transl.), 2003, vol. 29, no. 2, p. 258].

    CAS  Google Scholar 

  8. Cario, E. and Podolsky, D., Intestinal Epithelial Tolerance versus Intolerance of Commensals, Mol. Immunol., 2005, vol. 42, no. 8, p. 887.

    Article  PubMed  CAS  Google Scholar 

  9. Sakaguchi, S., Naturally Arising Foxp3-Expressing CD25+CD4+ Regulatory T cells in Immunological Tolerance to Self and Non-Self, Nature Immunol., 2005, vol. 6, p. 345.

    Article  CAS  Google Scholar 

  10. Kyblack, J.G., Microbiology. Principles and Applications, Upper Saddle River: Prentice Hall, 1996, 3rd edition.

    Google Scholar 

  11. Lebedev, K.A. and Petrov, R.V., Immunological Problems of Closed Spaces and Gnotobiology, Usp. Sovr. Biol., 1971, vol. 71, no. 2, p. 235.

    PubMed  CAS  Google Scholar 

  12. Smith, D.W. and Nagler-Anderson, C., Preventing Intolerance: the Induction of Nonresponsiveness to Dietary and Microbial Antigens in the Intestinal Mucosa, J. Immunol., 2005, vol. 174, p. 3851.

    PubMed  CAS  Google Scholar 

  13. Cutler, C.W. and Jotwani, R., Cells at the Oral Mucosal Interface, J. Dent. Res., 2006, vol. 85, no. 8, p. 678.

    PubMed  CAS  Google Scholar 

  14. Cannon, J.P., Lee, T.A., Bolanos, J.T., and Danziger, L.H., Pathogenic Relevance of Lactobacillus: a Retrospective Review of over 200 Cases, Eur. J. Clin. Microbiol. Infect. Dis., 2005, vol. 24, no. 1. p. 31.

    Article  PubMed  CAS  Google Scholar 

  15. Teng, Y.-T., A Protective and Destructive Immunity in the Periodontium: Part 1. Innate and Humoral Immunity and the Periodontium, J. Dent. Res., 2006, vol. 85, no. 3, p. 198.

    PubMed  CAS  Google Scholar 

  16. Nazli, A., Yang, P.-C., Jury, J., et al., Epithelia under Metabolic Stress Perceive Commensal Bacteria as a Threat, Am. J. Pathol., 2004, vol. 64, p. 947.

    Google Scholar 

  17. Davydovskii, I.V., Uchenie ob infektsii (The Science of Infection), Moscow: Medgiz, 1956.

    Google Scholar 

  18. Bilibin, A.F., Khimioterapiya i problema endogennykh infektsii (Chemotherapy and the Problem of Endogenous Infections), Moscow: Medgiz, 1972.

    Google Scholar 

  19. Rudney, J.D., Chen, R., and Sedgewick, G.J., Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythensis Are Components of a Polymicrobial Intracellular Flora within Human Buccal Cells, J. Dent. Res., 2005, vol. 84, no. 1, p. 59.

    PubMed  CAS  Google Scholar 

  20. Edwards, A.M., Grossman, T.J., and Rudney, J.D., Fusobacterium nucleatum Transports Noninvasive Streptococcus cristatus into Human Epithelial Cells, Infect. Immun., 2006, vol. 74, no. 1, p. 654.

    Article  PubMed  CAS  Google Scholar 

  21. Kozlova, V.I. and Pukhner, A.F., Virusnye, khlamidioznye, i mikoplazmennye zabolevaniya genitalii (Viral, Chlamydial, and Mycoplasma-Induced Diseases of Genitals), Moscow: Avitsenna, 1995.

    Google Scholar 

  22. Goulhen, F., Grenier, D., and Mayrand, D., Oral Microbial Heat-Shock Proteins and Their Potential Contributions to Infections, Crit. Rev. Oral Biol. Med., 2003, vol. 14, no. 6, p. 399.

    PubMed  Google Scholar 

  23. Henderson, B., Allan, E., and Coates, A.R.M., Stress Wars: the Direct Role of Host and Bacterial Molecular Chaperones in Bacterial Infection, Infect. Immun., 2006, vol. 74, no. 7, p. 3693.

    Article  PubMed  CAS  Google Scholar 

  24. Asea, A., Rehli, M., Kabingu, E., et al., Novel Signal Transduction Pathway Utilized by Extracellular HSP70 Role of Toll-like Receptor (TLR) 2 and TLR4, J. Biol. Chem., 2002, vol. 277, no. 17, p. 15 028.

    Article  CAS  Google Scholar 

  25. Wu, T. and Tanguay, R.M., Antibodies against Heat Shock Proteins in Environmental Stresses and Diseases: Friend or Foe? Cell Stress Chaperones, 2006, vol. 11, no. 1, p. 1.

    Article  PubMed  CAS  Google Scholar 

  26. Kopeček, P., Altmannová, K., and Weigl, E., Stress Proteins: Nomenclature, Division, and Functions, Biomed. Papers, 2001, vol. 145, no. 2, p. 39.

    Google Scholar 

  27. Yamaguchi, Y., Tomoyasu, T., Takaya, A., et al., Effects of Disruption of Heat Shock Genes on Susceptibility of Escherichia coli to Fluoroquinolones, BMC Microbiol., 2003, vol. 3, no. 16, p. 1471.

    Google Scholar 

  28. Sabroe, I., Read, R.C., Whyte, M.K.B., et al., Toll-Like Receptors in Health and Disease: Complex Questions Remain, J. Immunol., 2003, vol. 171, p. 1630.

    PubMed  CAS  Google Scholar 

  29. Weiner, H.L., Oral Tolerance, an Active Immunologic Process Mediated by Multiple Mechanisms, J. Clin. Invest., 2000, vol. 106, no. 8, p. 935.

    PubMed  CAS  Google Scholar 

  30. Lebedev, K.A., Maksimovskii, Yu.M., Mitronin, A.V., and Ponyakina, I.D., A New Understanding of the Pathogenesis of Periodontium Diseases in the Light of the Works on the Role of Pattern Recognition Receptors, Stomatologiya dlya Vsekh, 2006, no. 2, p. 24.

  31. Leone, C.W., Bokhadhoor, H., Kuo, D., et al., Immunization Enhances Inflammation and Tissue Destruction in Response to Porphyromonas gingivalis, Infect. Immun., 2006, vol. 74, no. 4, p. 2286.

    Article  PubMed  CAS  Google Scholar 

  32. Stöllberger, C. and Finsterer, J., Role of Infectious and Immune Factors in Coronary and Cerebrovascular Arteriosclerosis, Clin. Diagn. Lab. Imm., 2002, vol. 9, no. 2, p. 207.

    Article  Google Scholar 

  33. Gibson, F.C., Hong, C., Chou, H.-H., et al., Innate Immune Recognition of Invasive Bacteria Accelerates Atherosclerosis in Apolipoprotein E-Deficient Mice, Circulation, 2004, vol. 109, p. 2801.

    Article  PubMed  CAS  Google Scholar 

  34. Schleimer, R.P., Glucocorticoids Suppress Inflammation but Spare Innate Immune Responses in Airway Epithelium, Proc. Am. Thor. Soc., 2004, vol. 1, no. 1, p. 222.

    Article  CAS  Google Scholar 

  35. Lebedev, K.A., Ponyakina, I.D., and Kozachenko, N.V., Physiology of Chronic Inflammations and Their Treatment, Fiziol. Chel., 2005, vol. 31, no. 1, p. 100 [Hum. Physiol. (Engl. Transl.), 2005, vol. 31, no. 1, p. 86].

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © K.A. Lebedev, I.D. Ponyakina, 2007, published in Fiziologiya Cheloveka, 2007, Vol. 33, No. 3, pp. 100–107.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, K.A., Ponyakina, I.D. The role of heat shock proteins in the formation of conflict between the human body and its microflora. Hum Physiol 33, 342–348 (2007). https://doi.org/10.1134/S0362119707030115

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119707030115

Keywords

Navigation