Abstract
The study was designed to test the hypothesis that, during strength training, a restricted blood supply to the working muscles stimulates the secretion of anabolic hormones and an increase in the muscle mass and strength can be achieved with significantly lower training loads. During eight weeks, three times a week, 18 young, physically active males trained their leg extensor muscles. Nine subjects (group I) worked at 80% of the maximal voluntary contraction (MVC), whereas the rest (group II) performed their exercise without relaxation and at a lower load (50% MVC). The total training load in group II was significantly lower than in group I (77 ± 5 vs. 157 ± 7 kJ, respectively). The eight-week training of both groups significantly increased the mean maximum strength (by 35 and 21% in groups I and II, respectively) and volume (by 17 and 9%, respectively) of the muscles trained (however, the differences between the groups with respect to these changes were nonsignificant). Group I displayed a higher increase in the blood level of creatine phosphokinase than group II, while group II showed a greater increase in the blood concentration of lactate. In contrast to group I, group II displayed a significant increase in the blood concentrations of growth hormone, insulin-like growth factor 1 (IGF-1), and cortisol. Hence, the suggestion that the secretion of metabolic hormones is triggered by a metabolic, rather than mechanical, stimulus from working muscles seems plausible.
Similar content being viewed by others
References
Kraemer, W.J., Patton, J.F., Gordon, S.E., et al., Compatibility of High-Intensity Strength and Endurance Training on Hormonal and Skeletal Muscle Adaptations, J. Appl. Physiol., 1995, vol. 78, no. 3, p. 976.
Ahtiainen, J.P., Pakarinen, A., Alen, M., et al., Muscle Hypertrophy, Hormonal Adaptations and Strength Development during Strength Training in Strength-Trained and Untrained Men, Eur. J. Appl. Physiol., 2003, vol. 89, no. 6, p. 555.
Hakkinen, K., Alen, M., Kraemer, W.J., et al., Neuromuscular Adaptations during Concurrent Strength and Endurance Training versus Strength Training, Eur. J. Appl. Physiol., 2003, vol. 89, no. 1, p. 42.
McCall, G., Grindeland, R., Roy, R., and Edgerton, V. Muscle Afferent Activity Modulates Bioassayable Growth Hormone in Human Plasma, J. Appl. Physiol., 2000, vol. 89, p. 1137.
Goldspink, G., Mechanical Signals, IGF-1 Gene Splicing, and Muscle Adaptation, Physiology, (Bethesda) 2005, vol. 20, p. 232.
Gordon, S.E. Kraemer, W.J., Vos N.H., et al., Effect of Acid-Base Balance on the Growth Hormone Response to Acute High-Intensity Cycle Exercise, J. Appl. Physiol., 1994, vol. 76, no. 2, p. 821.
Lu, S.S., Lau, C.P., Tung, Y.F., et al., Lactate and the Effects of Exercise on Testosterone Secretion: Evidence for the Involvement of a cAMP-Mediated Mechanism, Med. Sci. Sports Exerc., 1997, vol. 29, no. 8, p. 1048.
Takarada, Y., Nakamura, Y, Aruga, S., et al., Rapid Increase in Plasma Growth Hormone after Low-Intensity Resistance Exercise with Vascular Occlusion, J. Appl. Physiol., 2000, vol. 88, no. 1, p. 61.
Sundberg, C.J., Exercise and Training during Graded Leg Ischemia in Healthy Men with Special Reference to Effects on Skeletal Muscle, Acta Physiol. Scand. Suppl., 1994, vol. 615, p. 1.
Viru, M., Jansson, E., Viru, A., and Sundberg, C.J., Effect of Restricted Blood Flow on Exercise-Induced Hormone Changes in Healthy Men, Eur. J. Appl. Physiol. Occup. Physiol., 1998, vol. 77, no. 6, p. 517.
Takarada, Y., Sato, Y., and Ishii, N., Effects of Resistance Exercise Combined with Vascular Occlusion on Muscle Function in Athletes, Eur. J. Appl. Physiol., 2002, vol. 86, no. 4, p. 308.
Burgomaster, K.A., Moore, D.R., Schofield, L.M., et al., Resistance Training with Vascular Occlusion: Metabolic Adaptations in Human Muscle, Med. Sci. Sports Exerc., 2003, vol. 35, no. 7, p. 1203.
Moore, D.R., Burgomaster, K.A., Schofield, L.M., et al., Neuromuscular Adaptations in Human Muscle Following Low Intensity Resistance Training with Vascular Occlusion, Eur. J. Appl. Physiol., 2004, vol. 92, nos. 4–5, p. 399.
Nygren, A.T., Sundberg, C.J., Goransson, H., et al., Effects of Dynamic Ischaemic Training on Human Skeletal Muscle Dimensions, Eur. J. Appl. Physiol., 2000, vol. 82, nos. 1–2, p. 137.
Seluyanov, V.N., Podgotovka beguna na srednie distantsii (Training of a Middle-Distance Runner), Moscow: SportAkademPress, 2001.
Netreba, A., Popov, D., Vdovina, A., et al. Physiological Effects of Low-Intensity Strength Training without Relaxation, in 10th Annual Congress of the ECSS. Book of Abstracts, Belgrade, Serbia, 2005, p. 397.
Dons, B., Bollerup, K., Bonde-Petersen, F., and Hancke, S., The Effect of Weight-Lifting Exercise Related to Muscle Fiber Composition and Muscle Cross-Sectional Area in Humans, Eur. J. Appl. Physiol. Occup. Physiol., 1979, vol. 40, no. 2, p. 95.
Cerney, F.G. and Haralambie, G., Exercise-Induced Loss of Muscles Enzymes, in Knuttgen, H.G., Vogel, J.A., and Poortmans, J., Eds., Biochemistry of Exercise, Champaign (IL): Human Kinetics, 1983, vol. 13, p. 441.
Newham, D.J., McPhail, G., Mills, K.R., and Edwards, R.H., Ultrastructural Changes after Concentric and Eccentric Contractions of Human Muscle, J. Neurol. Sci., 1983, vol. 61, no. 1, p. 109.
Newham, D.J., Jones, D.A., and Edwards, R.H., Plasma Creatine Kinase Changes after Eccentric and Concentric Contractions, Muscle Nerve, 1986, vol. 9, no. 1, p. 59.
Evans, W.J., Meredith, C.N., Cannon, J.G., et al., Metabolic Changes Following Eccentric Exercise in Trained and Untrained Men, J. Appl. Physiol., 1986, vol. 61, no. 5, p. 1864.
Newham, D.J., Jones, D.A., and Clarkson, P.M., Repeated High-Force Eccentric Exercise: Effects on Muscle Pain and Damage, J. Appl. Physiol., 1987, vol. 63, no. 4, p. 1381.
Hakkinen, K., Pakarinen, A., Alen, M., et al., Relationships between Training Volume, Physical Performance Capacity, and Serum Hormone Concentrations during Prolonged Training in Elite Weight Lifters, Int. J. Sports Med., 1987, vol. 8,suppl. 1, p. 61.
Author information
Authors and Affiliations
Additional information
Original Russian Text © D.V. Popov, D.V. Swirkun, A.I. Netreba, O.S. Tarasova, A.B. Prostova, I.M. Larina, A.S. Borovik, O.L. Vinogradova, 2006, published in Fiziologiya Cheloveka, 2006, Vol. 32, No. 5, pp. 121–127.
Rights and permissions
About this article
Cite this article
Popov, D.V., Swirkun, D.V., Netreba, A.I. et al. Hormonal adaptation determines the increase in muscle mass and strength during low-intensity strength training without relaxation. Hum Physiol 32, 609–614 (2006). https://doi.org/10.1134/S0362119706050161
Received:
Issue Date:
DOI: https://doi.org/10.1134/S0362119706050161