Skip to main content
Log in

Algorithms and Programs for Calculating the Roots of Polynomial of One or Two Variables

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

Algorithms and software for two new methods of solving polynomial equations based on constructing a convex polygon are described. The first method approximately solves the equations using the Hadamard polygon. The second method makes it possible to find branches of an algebraic curve in the vicinity of its singular points and in the vicinity of infinity using the Newton polygon and sketch real algebraic curves on the plane. The corresponding geometries and computer algebra algorithms for analyzing arbitrarily complicated cases are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bruno, A.D., Algorithms for solving an algebraic equation, Program. Comput. Software, 2018, vol. 44, no. 6, pp. 533–545. https://doi.org/10.1134/S0361768819100013

    Article  MathSciNet  MATH  Google Scholar 

  2. Bruno, A.D., Power Geometry in Algebraic and Differential Equations (Moscow: Fizmatlit, 1998; Amsterdam: Elsevier, 2000).

  3. Klein, F., Vorlesungen über die Entwicklung der Mathematik im 19 Jahrhundert, Berlin: 1926. Development of Mathematics in the 19th Century, Berlin: Springer, 1979.

  4. Efimov, N.V., Higher Geometry, Moscow: Mir, 1980.

  5. Kostrikin A.I. and Manin Y.I., Linear Algebra and Geometry, New York: Gordon & Breach, 1997.

    MATH  Google Scholar 

  6. Veblen O. and Young J. W., Projective Geometry, Vol. 1 New York: Blaisdell, 1938.

    MATH  Google Scholar 

  7. Shafarevich, I.R., Basic Algebraic Geometry 1. Varieties in Projective Space, Heidelberg: Springer, 2013.

    Book  Google Scholar 

  8. Bruno, A.D., Local Methods in Nonlinear Differential Equations, Berlin: Springer, 1989.

    Book  Google Scholar 

  9. Bruno, A.D. and Batkhin, A.B., Resolution of an algebraic singularity by power geometry algorithms, Program. Comput. Software, 2012, vol. 38, no. 2, pp. 57–72. https://doi.org/10.1134/S036176881202003X

    Article  MathSciNet  MATH  Google Scholar 

  10. Bruno, A.D., Asymptotic behaviour and expansions of solutions of an ordinary differential equation, Russ. Math. Surveys, 2004, vol. 59, no. 3, pp. 429–480.

    Article  Google Scholar 

  11. Bruno, A.D., and Shadrina, T.V., Axisymmetric boundary layer on a needle, Trans. Mosc. Math. Soc., 2007, vol. 68, pp. 201–259.

    Article  MathSciNet  Google Scholar 

  12. Bruno, A.D. and Goryuchkina, I.V., Asymptotic expansions of solutions to the sixths Painlevé equation, Trans. Mosc. Math. Soc., 2010, vol. 71, pp. 1–104.

    Article  Google Scholar 

  13. Bruno, A.D., Expansion of solutions to an ordinary differential equation into transseries, Dokl. Math, 2019, vol. 99, no. 1, pp. 36–39. https://doi.org/10.1134/S1064562419010113

    Article  MATH  Google Scholar 

  14. Gallier, J., Geometric Methods and Applications. For Computer Science and Engineering. New York: Springer, 2011.

    Book  Google Scholar 

  15. Barber C.B. Dobkin D.P., and Huhdanpaa H.T., The Quickhull algorithm for convex hulls, ACM Trans. Math. Software, 1996, vol. 22, no. 4, pp. 469–483.

    Article  MathSciNet  Google Scholar 

  16. Batkhin, A.B., Bruno, A.D., and Varin, V.P., Stability sets of multiparameter Hamiltonian systems, J. Appl. Math. Mech. 2012, vol. 76, no. 1, pp. 56–92. https://doi.org/10.1016/j.jappmathmech.2012.03.006

    Article  MathSciNet  MATH  Google Scholar 

  17. Thompson, I., Understanding Maple, Cambridge University Press, 2016.

    MATH  Google Scholar 

  18. The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.1.1), 2020. https://doi.org/10.5281/zenodo.4066866. https://www.sagemath.org.

  19. Fukuda K. cdd, cddplus and cddlib homepage. McGill University, Montreal, Canada, 2002. http://www.cs.mcgill.ca/~fukuda/software/cdd_home/ cdd.html

  20. Bagnara R., Hill P.M., and Zaffanella E., The Parma polyhedra library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems, Sci. Comput. Program., 2008, vol. 72, nos. 1–2, pp. 3–21.

    Article  MathSciNet  Google Scholar 

  21. Meurer, A., Smith, C.P., Paprocki, M., et al. SymPy: Symbolic computing in Python, PeerJ Comput. Sci., 2017, vol. 3, p. e103. https://doi.org/10.7717/peerj-cs.103

    Article  Google Scholar 

  22. Bruce, King R., Beyond the Quartic Equation. Boston: Birkhäser, 1996.

    MATH  Google Scholar 

  23. Umemura, H., Resolution of algebraic equations by theta constants, in D. Mumford, Tata Lectures on Theta II. Jacobian Theta Functions and Differential Equations (Birkhäuser, Boston, 1984), pp. 261–272.

    Google Scholar 

  24. Hadamard, J., Etude sur les propriétés des fonctions entières et en particulier d’une fonction considéro par Riemann, J. Math. Pures Appl. \({{4}^{e}}\) Sér. 1893, vol. 9, pp. 171–216.

    Google Scholar 

  25. Kurosh, A.G. Higher Algebra, Moscow, Mir, 1980.

  26. Kalinina, E.A. and Uteshev, A.Yu., Elimination Theory, St. Petersburg: Naucho-Issledovatel’skii Inst. Khimii, St. Petersburg Univ., 2002 [in Russian].

    Google Scholar 

  27. Von zur Gathen J. and Lücking, T. Subresultants revisited, Theor. Comput. Sci., 2003, vol. 297, pp. 199–239. https://doi.org/10.1016/S0304-3975(02)00639-4

    Article  MathSciNet  MATH  Google Scholar 

  28. Batkhin, A.B., Parameterization of the discriminant set of a polynomial, Program. Comput. Software, 2016, vol. 42, no. 2, pp. 67–76. https://doi.org/10.1134/S0361768816020031

    Article  MathSciNet  MATH  Google Scholar 

  29. Akritas, A.G., Elements of Computer Algebra with Applications, New York: Wiley, 1989.

    MATH  Google Scholar 

  30. Puiseux, V., Recherches sur les fonctions algébriques, J. Math. Pures Appl., Sér. 1, 1850, vol. 15, pp. 365–480.

    Google Scholar 

  31. Goursat, E., Course of Mathematical Analysis, New York: Dover, 1959.

    MATH  Google Scholar 

  32. Hoeij M., Rational parametrizations of algebraic curves using a canonical divisor, J. Symb. Comput., 1997, vol. 23, pp. 209–227.

    Article  MathSciNet  Google Scholar 

  33. Wolfram, S., The Mathematica Book, Wolfram Media, 2003.

    MATH  Google Scholar 

  34. Cox D., Little J., and O’Shea D., Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, Heidelberg: Springer, 2015, 4th ed.

    Book  Google Scholar 

  35. Zobova, I., Geometric methods of solving polynomial equations, Materialy XIX Mezhd. Konf., Shkol’nikov Kolmogorovskie Chteniya (Abstracts of the XIX Conf. of Students of the Advanced Educational Scientific Center—Kolmogorov Boarding School of Moscow State University) 2019, Matematika, Moscow: Shkola-Internat im. Kolmogorova, 2019, pp. 15–16.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. D. Bruno or A. B. Batkhin.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, A.D., Batkhin, A.B. Algorithms and Programs for Calculating the Roots of Polynomial of One or Two Variables. Program Comput Soft 47, 353–373 (2021). https://doi.org/10.1134/S0361768821050042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768821050042

Navigation