Skip to main content
Log in

Analysis of Mobility Patterns for Public Transportation and Bus Stops Relocation

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

Knowing the mobility patterns of citizens using public transportation is an important issue for modern smart cities. Mobility information is crucial for designing and planning an urban transportation system able to provide good service to citizens. We address two relevant problems related to public transportation systems: the analysis of mobility patterns of passengers and the relocation of bus stops in an urban area. For the first problem, a big-data approach is applied to process large volume one space of information. Several relevant metrics are computed and analyzed to characterize the mobility patterns using data from the public transportation system on Montevideo, Uruguay. We obtain user demand and origin-destination matrices by analyzing the tickets sale information and the buses locations. A distributed implementation is proposed, reaching significant execution time improvements (speedup up to 17.10 when using 24 computing resources). For the second problem, a multiobjective evolutionary algorithm is proposed to relocate bus stops in order to improve the quality of service by minimizing the travel time and bus operational costs. The algorithm is evaluated over instances of the problem generated with real data from the year 2015. The experimental results show that the algorithm is able to obtain improvements of up to 16.7 and 33.9% in time and cost respectively, compared to space situation in the year 2015.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. Bielli, M., Carambia, M., and Carotenuto, P., Genetic algorithms in bus network optimization, Transport. Res. Part C: Emerg. Technol., 2002, vol. 10, pp. 19–34.

    Article  Google Scholar 

  2. Coello, C., Van Veldhuizen, D., and Lamont, G., Evolutionary Algorithms for Solving Multiobjective Problems, Kluwer, 2002.

    Book  MATH  Google Scholar 

  3. Deakin, M. and Al Waer, H., From intelligent to smart cities, Intellig. Buildings Int., 2011, vol. 3, pp. 133–139.

    Article  Google Scholar 

  4. Deb, K., Multi-Objective Optimization using Evolutionary Algorithms, John Wiley, 2001.

    MATH  Google Scholar 

  5. Deb, K., Chakroborty, P., and Subrahmanyam, P.S., Optimal scheduling of urban transit systems using genetic algorithms, J. Transport. Eng., 1995, vol. 121, pp. 544–553.

    Article  Google Scholar 

  6. Fabbiani, E., Vidal, P., Massobrio, R., and Nesmachnow, S., Distributed big data analysis for mobility estimation in intelligent transportation systems, in Proc. Latin American High Performance Computing Conf., Mexico, 2016, pp. 146–160.

  7. Figueiredo, L., Jesus, I., Tenreiro Machado, J., Rui Ferreira, J., and Carvalho, J.L., Towards the development of intelligent transportation systems, Proc. IEEE Conf. on Intelligent Transportation Systems, Oakland, 2001, pp. 1206–1211.

  8. Grava, S., Urban Transportation Systems: Choices for Communities, McGraw-Hill, 2002.

    Google Scholar 

  9. Intendencia de Montevideo. STM: Sistema de Transporte Metropolitano, July 2017, http://www.montevideo.gub.uy/transito-y-transporte.

  10. Intendencia de Montevideo. Plan de movilidad urbana: hacia un sistema de movilidad accesible, democrático y eficiente. July 2017. http://www.montevideo.gub.uy/ sites/default/files/plan_de_movilidad.pdf, 2010.

  11. Intendencia de Montevideo. Catálogo de Datos Abiertos, July 2016. https://catalogodatos.gub.uy/, 2014.

  12. Intendencia de Montevideo. Horarios de ómnibus, July 2017. http://www.montevideo.gub.uy/horariosSTM/, 2017.

  13. Johar, A., Jain, S., and Garg, P., Transit network design and scheduling using genetic algorithm – a review, Int. J. Optimiz. Control: Theor. Appl., 2015, vol. 6, pp. 9–22.

    MathSciNet  MATH  Google Scholar 

  14. A. Król, Application of the Genetic Algorithm for Optimization of the Public Transportation Lines, Cham: Springer Int. Publ., 2017, pp. 135–146.

    Book  Google Scholar 

  15. Massobrio, R., Nesmachnow, S., Tchernykh, A., Avetisyan, A., and Radchenko, G., Towards a cloud computing paradigm for big data analysis in smart cities, Proc. ISP RAS, 2016, vol. 28, no. 6, pp. 121–140.

  16. Massobrio, R., Pias, A., Vázquez, N., and Nesmachnow, S., Map-reduce for processing GPS data from public transport in Montevideo, Uruguay, Proc. 2nd Argentinian Symp. on Big Data, Tres de Febrero, 2016, pp. 41–54.

  17. Mellegård, E., Obtaining origin/destinationmatrices from cellular network data, Sept. 2017. http://publications.lib.chalmers.se/records/fulltext/154702.pdf.

  18. Munizaga, M. and Palma, C., Estimation of a disaggregate multimodal public transport origin-destination matrix from passive smartcard data from Santiago, Chile, Transport. Res. Part C: Emerg. Technol., 2012, vol. 24, pp. 9–18.

    Article  Google Scholar 

  19. Nesmachnow, S., Computación científica de alto desempeño en la Facultad de Ingeniería, Universidad de la República, Revista de la Asociación de Ingenieros del Uruguay, 2010, vol. 61, no. 1, pp. 12–15.

  20. Nesmachnow, S., An overview of metaheuristics: accurate and efficient methods for optimisation, Int. J. Metaheuristics, 2014, vol. 3, no. 4, pp. 320–347.

    Article  Google Scholar 

  21. Nesmachnow, S., Using metaheuristics as soft computing techniques for efficient optimization, in An Encyclopedia of Information Science and Technology, 3rd ed., 2015, pp. 7390–7399.

  22. Nesmachnow, S., Bana, S., and Massobrio, R., A distributed platform for big data analysis in smart cities: combining intelligent transportation systems and socioeconomic data for Montevideo, Uruguay, EAI Endors. Trans. Smart Cities, 2017, vol. 2, no. 5, pp. 1–18.

    Article  Google Scholar 

  23. Pelletier, M., Trépanier, M., and Morency, C., Smart card data use in public transit: a literature review, Transpor. Res. Part C: Emerging Technol., 2011, vol. 19, no. 4, pp. 557–568.

    Article  Google Scholar 

  24. Pena, D., Tchernykh, A., Nesmachnow, S., Massobrio, R., Feoktistov, A., and Bychkov, I., Multiobjective vehicle-type scheduling in urban public transport, Proc. IEEE International Parallel and Distributed Processing Symp. Workshops, Orlando, May 2017, pp. 482–491.

  25. Pena, D., Tchernykh, A., Nesmachnow, S., Massobrio, R., Feoktistov, A., Bychkov, I., Radchenko, G., Droz-dov, A.Yu., and Garichev, S., Operating cost and quality of service optimization for multi-vehicle-type timetabling for urban bus systems, J. Parallel Distributed Comput., 2018 (in press).

  26. Pena, D., Tchernykh, A., Radchenko, G., Nesmachnow, S., Ley-Flores, J., and Nazariega, R., Multiobjective optimization of greenhouse gas emissions enhancing the quality of service for urban public transport timetabling, Proc. 4th Int. Conf. on Engineering and Telecommunication, Moscow, 2017, pp. 114–118.

  27. Sun, C., Dynamic oigin/destination estimation using true section densities, California PATH Research Report, 2000.

  28. Toole, J.L., Colak, S., Sturt, B., Alexander, L.P., Evsukoff, A., and González, M.C., The path most traveled: travel demand estimation using big data resources, Transport. Res. Part C: Emerg. Technol., Part B, 2015, vol. 58, pp. 162–177.

    Google Scholar 

  29. Trépanier, M., Tranchant, N., and Chapleau, R., Individual trip destination estimation in a transit smart card automated fare collection system, J. Intellig. Transport. Syst., 2007, vol. 11, no. 1, pp. 1–14.

    Article  Google Scholar 

  30. Wang, W., Attanucci, J., and Wilson, N., Bus passenger origin-destination estimation and related analyses using automated data collection systems, J. Publ. Transport., 2011, vol. 14, no. 4, pp. 131–150.

    Article  Google Scholar 

  31. Xiong, Y. and Schneider, J.B., Transportation nework design using a cumulative genetic algorithm and neural network, Transport. Res. Rec., 1993, no. 1364, pp. 37–44.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enzo Fabbiani, Sergio Nesmachnow, Jamal Toutouh, Andrei Tchernykh, Arutyun Avetisyan or Gleb Radchenko.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabbiani, E., Nesmachnow, S., Toutouh, J. et al. Analysis of Mobility Patterns for Public Transportation and Bus Stops Relocation. Program Comput Soft 44, 508–525 (2018). https://doi.org/10.1134/S0361768819010031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768819010031

Navigation