Skip to main content
Log in

Investigation of the restricted problem of three bodies of variable masses using computer algebra

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

The classical restricted three-body problem for bodies with variable masses is discussed for the case when the masses of two bodies vary isotropically at different rates and their sum varies according to the joint Meshchersky law. Within the perturbation theory in Hills’s approximation, differential equations determining the secular perturbations of the orbital elements are obtained and it is shown that they are integrable under arbitrary laws governing the mass variations satisfying the joint Meshchersky law. The influence of the variations of the body masses on the evolution of the orbital parameters is comparable with the perturbations created by massive bodies. All symbolic computations are performed in Wolfram Mathematica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roy, A.E., Orbital Motion, Bristol: Hilger, 1978.

    MATH  Google Scholar 

  2. Szebehely, V., Theory of Orbits, the Restricted Problem of Three Bodies, New York: Academic, 1967.

    MATH  Google Scholar 

  3. Bertotti, B. and Farinella, P., Physics of the Earth and the Solar System. Dynamics and Evolution, Space Navigation, Space-Time Structure, Kluwer: Dordrecht, 1990.

    MATH  Google Scholar 

  4. Merman, G.A., On the representation of the general solution of the three body problem by converging series, Bull. Inst. Teor. Astron., 1958, vol. 6, pp. 713–732.

    MathSciNet  Google Scholar 

  5. Brumberg, V.A., Polynomial series in the three body problem, Bull. Inst. Astron., 1963, vol. 9, no. 4, pp. 234–256.

    MathSciNet  Google Scholar 

  6. Borunov, V.P. and Ryabov, Yu.A., Construction of a analytic–numerical trigonometric solution of the three body problem in Mathematica and Maple, in Application of Mathematica and Maple in Scientific Research, Moscow: Vych. Tsentr Ross. Akad. Nauk, 2001, pp. 63–77.

    Google Scholar 

  7. Bruno, A.D., Ogranichennaya zadacha trekh tel. Ploskie periodicheskie orbity (The Restricted Three Body Problem: Plane Periodic Orbits), Nauka: Moscow, 1990.

    MATH  Google Scholar 

  8. Markeev, A.P., Tochki libtatsii v nebesnoi mekhanike i kosmodinamike (Libration Points in Celestial Mechanics and Astrodynamics), Nauka: Moscow, 1978.

    Google Scholar 

  9. Brumberg, V.A. Analiticheskie algoritmy v nebesnoi mekhanike (Analytical Techniques of Celestial Mechanics), Moscow: Nauka, 1980.

    Google Scholar 

  10. Prokopenya, A.N., Some Symbolic Computation Algorithms in Cosmic Dynamics Problem, Program. Comput. Software, 2006, vol. 32, no. 2, pp. 71–76.

    Article  MathSciNet  MATH  Google Scholar 

  11. Prokopenya, A.N., Determination of the stability boundaries for the Hamiltonian systems with periodic coefficients, Math. Modell. Anal., 2005, vol. 10, no. 2. pp. 191–204.

    MathSciNet  MATH  Google Scholar 

  12. Prokopenya, A.N., Computing the stability boundaries for the Lagrange triangular solutions in the elliptic restricted three-body problem, Math. Modell. Anal., 2006, vol. 11, no. 1, pp. 95–104.

    MathSciNet  MATH  Google Scholar 

  13. Prokopenya, A.N., Symbolic Computation in Studying Stability of Solutions of Linear Differential Equations with Periodic Coefficients, Program. Comput. Software, 2007, vol. 33, no. 2, pp. 60–66.

    Article  MathSciNet  MATH  Google Scholar 

  14. Prokopenya, A.N., Hamiltonian Normalization in the Restricted Many-Body Problem by Computer Algebra Methods, Program. Comput. Software, 2012, vol. 38, no. 3, pp. 156–169.

    Article  MathSciNet  MATH  Google Scholar 

  15. Budzko, D. A. and Prokopenya, A.N., Symbolic–Numerical Analysis of Equilibrium Solutions in a Restricted Four-Body Problem, Program. Comput. Software, 2010, vol. 36, no. 2, pp. 68–74.

    Article  MathSciNet  MATH  Google Scholar 

  16. Budzko, D. A. and Prokopenya, A.N., Symbolic–Numerical Methods for Searching Equilibrium States in a Restricted Four-Body Problem, Program. Comput. Software, 2013, vol. 39, no. 2, pp. 74–80.

    Article  MathSciNet  MATH  Google Scholar 

  17. Bekov, A.A. and Omarov, T.B. The theory of orbits in non-stationary stellar systems, Astron. Astrophys. Trans., 2003, vol. 22, no. 2, pp. 145–153.

    Article  Google Scholar 

  18. Eggleton, P., Evolutionary Processes in Binary and Multiple Stars, Cambridge University Press, 2006.

    Book  Google Scholar 

  19. Luk’yanov, L.G., Dynamical evolution of stellar orbits in close binary systems with conservative mass transfer, Astron. Rep., 2008, vol. 52, no. 8, pp. 680–693.

    Article  Google Scholar 

  20. Minglibayev, M.Zh., Dinamika gravitiruyushchikh tel s peremennymi massami i razmerami (Dynamics of Gravitating Bodies of Variable Masses and Sizes), Lambert Academic, 2012.

    Google Scholar 

  21. Minglibayev, M.Zh. and Mayemerova, G.M., Investigation of the evolutionary equations of the three-body problem with variable masses, Appl. Math. Sci., 2013, vol. 7, no. 89, pp. 4439–4454.

    MathSciNet  Google Scholar 

  22. Minglibayev, M.Zh. and Mayemerova, G.M., Evolution of the orbital-plane orientations in the two-protoplanet three-body problem with variable masses, Astron. Rep., 2014, vol. 58. no. 9, pp. 667–677.

    Article  Google Scholar 

  23. Prokopenya, A.N., Minglibayev, M.Zh. and Mayemerova, G.M., Symbolic Calculations in Studying the Problem of Three Bodies with Variable Masses, Program. Comput. Software, 2014, vol. 40, no. 2, pp. 79–85.

    Article  MathSciNet  MATH  Google Scholar 

  24. Lidov, M.L. and Ziglin, S.L., Non-restricted doubleaveraged three-body problem in Hill’s case, Celestial Mech., 1975. vol. 13, pp. 471–489.

    Article  MATH  Google Scholar 

  25. Lidov, M.L. and Vashkovyak, M.A., On quasi-satellite orbits in a restricted elliptic three-body problem. Astron. Lett., 1994, vol. 20, no. 5, pp. 676–690.

    Google Scholar 

  26. Ford, E.B., Kozinsky, B., and Rasio, F.A., Secular evolution of hierarchical triple star systems, Astron. J., 2000, vol. 535, pp. 385–401.

    Article  Google Scholar 

  27. Prokopenya, A.N., Minglibayev, M.Zh., and Beketauov, B.A., On integrability of evolutionary equations in the restricted three-body problem with variable masses, in Computer Algebra in Scientific Computing/CASC’2014, Gerdt, V.P., Koepf, W., Seiler, W.M., and Vorozhtsov, E.V., Eds., Lect. Notes. Comput. Sci., Berlin, Schpringer, 2014, vol. 8660, pp. 375–389.

    MATH  Google Scholar 

  28. Prokopenya, A.N., Minglibayev, M.Zh., and Beketauov, B.A., Secular perturbations of quasi-elliptic orbits in the restricted three-body problem with variable masses, Int. J. Non-Linear Mech., 2015, vol. 73, pp. 58–63.

    Article  Google Scholar 

  29. Berkovic, L.M., Gylden–Mešcerski problem, Celestial Mech., 1981, vol. 24, pp. 407–429.

    Article  MathSciNet  Google Scholar 

  30. Ziglin, S.L., On the secular evolution of a planet orbit in a double star system, Pis’ma Astron. Zh., vol. 1, no. 9, pp. 45–47.

  31. Wolfram, S., The Mathematica Book, 5th ed. Wolfram Media/Cambridge University Press, 2003.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Prokopenya.

Additional information

Original Russian Text © A.N. Prokopenya, M.Zh. Minglibayev, G.M. Mayemerova, Zh.U. Imanova, 2017, published in Programmirovanie, 2017, Vol. 43, No. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokopenya, A.N., Minglibayev, M.Z., Mayemerova, G.M. et al. Investigation of the restricted problem of three bodies of variable masses using computer algebra. Program Comput Soft 43, 289–293 (2017). https://doi.org/10.1134/S0361768817050061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768817050061

Navigation