Advertisement

Programming and Computer Software

, Volume 43, Issue 3, pp 196–203 | Cite as

Memory-compact Metropolis light transport on GPUs

  • V. A. FrolovEmail author
  • V. A. Galaktionov
Article
  • 69 Downloads

Abstract

Solutions to the key problems of Metropolis light transport implementation on GPUs are proposed. A “burn-in” method relying on the ordinary Monte Carlo method, owing to which the “startup bias” is significantly reduced, is suggested. Memory optimizations methods (including multiple proposal Metropolis light transport) are proposed, and technical aspects of efficient Metropolis light transport implementation on GPUs are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kajiya, J.T., The rendering equation, Proc. of the 13th Annual Conf.e on Computer Graphics and Interactive Techniques, SIGGRAPH’86, 1986, pp. 143–150.Google Scholar
  2. 2.
    Veach, E. and Guibas, L.J., Metropolis light transport, Proc. of the 24th Annual Conf. on Computer Graphics and Interactive Techniques, SIGGRAPH’97, pp. 65–76.Google Scholar
  3. 3.
    Kelemen Csaba, Szirmay-Kalos Laszlo, Antal Gyorgy, and Csonka Ferenc, A simple and robust mutation strategy for the Metropolis light transport algorithm, EUROGRAPHICS 2002, Drettakis, G. and Seidel, H.-P., Eds., 2002, vol. 21, no.3.Google Scholar
  4. 4.
    Geyer, Ch.J., Introduction to Markov chain Monte Carlo, Handbook of Markov Chain Monte Carlo, Brooks, S., Gelman, A., Jones, G.L., and Xiao-Li Meng, Eds. http://www.mcmchandbook.net/HandbookChapter1. pdfGoogle Scholar
  5. 5.
    Veach, E., Robust Monte Carlo methods for light transport simulation, Ph.D. Dissertation, Stanford University, 1997.Google Scholar
  6. 6.
    Vorba, J., Bidirectional Photon Mapping, Prague: Charles University, 2011.Google Scholar
  7. 7.
    Georgiev, I., Krivanek, Ja., Davidovic, T., and Slusallek, Ph., Light transport simulation with vertex connection and merging, ACM Trans. Graph. (SIGGRAPH Asia), 2012, vol. 31, no. 6, p.192.Google Scholar
  8. 8.
    Hachisuka Toshiya, Kaplanyan, A.S., Dachsbacher Carsten, Multiplexed Metropolis light transport, Proc. of ACM SIGGRAPH, 2014, vol. 33, no. 4, article100.Google Scholar
  9. 9.
    Davidovic, T., Krivanek, Ja., Hasan, M., and Slusallek, Ph., Progressive light transport simulation on the GPU: Survey and improvements, ACM Trans. Graph., 2014, vol. 33, no. 3, p.29.CrossRefGoogle Scholar
  10. 10.
    van Antwerpen, Dietger, Unbiased physically based rendering on the GPU, PhD Thesis, 2010.Google Scholar
  11. 11.
    van Antwerpen, Dietger, Improving SIMD efficiency for parallel Monte Carlo light transport on the GPU, Proc. of the ACM SIGGRAPH Symposium on High Performance Graphics, HPG’11, 2011, pp. 41-50.Google Scholar
  12. 12.
    Liu, J.S., Liang, F., and Wong, W.H., The multiple-try method and local optimization in Metropolis sampling, J. Am. Statist. Ass., 2000, vol. 95, pp. 121–134.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Tjelmeland, Hakon, Using all Metropolis Hastings proposals to estimate mean values, Statistics, no. 4, Trondheim, Norway: Department of Mathematical Sciences, Norwegian Univ. of Science and Technology, 2004.Google Scholar
  14. 14.
    Stormark, K., Multiple proposal strategies for Markov chain Monte Carlo, MS Dissertation (Phys.-Math.), 2006.Google Scholar
  15. 15.
    Segovia, B., Iehl, J.C., and Peroche, B., Coherent Metropolis light transport with multiple-try mutations, Soumis a Eurographics Symp. on Rendering, 2007.Google Scholar
  16. 16.
    Schmidt, M., Lobachev, O., and Guthe, M., Coherent Metropolis light transport on the GPU using speculative mutations, J. WSCG, 2016, vol. 24, no. 1, pp. 1–8.Google Scholar
  17. 17.
    Harris, M., Sengupta Shubhabrata, and Owens, J.D., Parallel prefix sum (scan) with CUDA, GPU Gems 3, Hubert Nhuyen, Ed., 2007, pp. 851–876.Google Scholar
  18. 18.
    Suhorukov, I., OpenCL 1.1: Atomic operations on floating point values, 2011. http://suhorukov.blogspot. ru/2011/12/opencl-11-atomic-operations-on-floating. html.Google Scholar
  19. 19.
    Morton, G.M., A computer oriented geodetic data base; and a new technique in file sequencing, Technical Report, Ottawa: IBM, 1966.Google Scholar
  20. 20.
    Renderer Hydra, Plug-in for rendering realistic images in 3D Studio Max with the help of GPU. http://www. raytracing.ru/.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.The Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations