Programming and Computer Software

, Volume 43, Issue 3, pp 204–215 | Cite as

Min_c: Heterogeneous concentration policy for energy-aware scheduling of jobs with resource contention

  • F. A. Armenta-Cano
  • A. Tchernykh
  • J. M. Cortes-Mendoza
  • R. Yahyapour
  • A. Yu. Drozdov
  • P. Bouvry
  • D. Kliazovich
  • A. Avetisyan
  • S. Nesmachnow
Article

Abstract

In this paper, we address energy-aware online scheduling of jobs with resource contention. We propose an optimization model and present new approach to resource allocation with job concentration taking into account types of applications and heterogeneous workloads that could include CPU-intensive, diskintensive, I/O-intensive, memory-intensive, network-intensive, and other applications. When jobs of one type are allocated to the same resource, they may create a bottleneck and resource contention either in CPU, memory, disk or network. It may result in degradation of the system performance and increasing energy consumption. We focus on energy characteristics of applications, and show that an intelligent allocation strategy can further improve energy consumption compared with traditional approaches. We propose heterogeneous job consolidation algorithms and validate them by conducting a performance evaluation study using the Cloud Sim toolkit under different scenarios and real data. We analyze several scheduling algorithms depending on the type and amount of information they require.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kliazovich, D., Pecero, J.E., Tchernykh, A., Bouvry, P., Khan, S.U., and Zomaya, A.Y., CA-DAG: Modeling communication-aware applications for scheduling in Cloud computing, J. Grid Comput., 2015.Google Scholar
  2. 2.
    Beloglazov, A., Abawajy, J., and Buyya, R., Energyaware resource allocation heuristics for efficient management of data centers for Cloud computing, Future Gener. Comput. Syst., 2012, vol. 28, no. 5, pp. 755–768.CrossRefGoogle Scholar
  3. 3.
    Luo, J., Li, X., and Chen, M., Hybrid shuffled frog leaping algorithm for energy-efficient dynamic consolidation of virtual machines in cloud data centers, Expert Syst. Appl., 2014, vol. 41, no. 13, pp. 5804–5816.CrossRefGoogle Scholar
  4. 4.
    Hsu, C.-H., Slagter, K.D., Chen, S.-C., and Chung, Y.-C., Optimizing energy consumption with task consolidation in clouds, Inf. Sci., 2014, vol. 258, pp. 452–462.CrossRefGoogle Scholar
  5. 5.
    Hosseinimotlagh, S., Khunjush, F., and Hosseinimotlagh, S., A cooperative two-tier energy-aware scheduling for real-time tasks in computing Clouds, Proceedings of the 2014 22Nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, Washington, DC, USA, 2014, pp. 178–182.Google Scholar
  6. 6.
    Wang, X., Liu, X., Fan, L., and Jia, X., A Decentralized Virtual Machine migration approach of data centers for Cloud computing, Math. Probl. Eng., 2013, vol. 2013, p. e878542.Google Scholar
  7. 7.
    Gao, Y., Wang, Y., Gupta, S.K., and Pedram, M., An energy and deadline aware resource provisioning, scheduling and optimization framework for Cloud systems, Proceedings of the Ninth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, Piscataway, NJ, USA, 2013, pp. 31:1–31:10.Google Scholar
  8. 8.
    Luo, L., Wu, W., Tsai, W.T., Di, D., and Zhang, F., Simulation of power consumption of cloud data centers, Simul. Model. Pract. Theory, 2013, vol. 39, pp. 152–171.CrossRefGoogle Scholar
  9. 9.
    Liu, Z., Ma, R., Zhou, F., Yang, Y., Qi, Z., and Guan, H., Power-aware I/O-intensive and CPU-intensive applications hybrid deployment within virtualization environments, 2010 IEEE International Conference on Progress in Informatics and Computing (PIC), 2010, vol. 1, pp. 509–513.Google Scholar
  10. 10.
    Lezama, A., Tchernykh, A., and Yahyapour, R., Performance evaluation of infrastructure as a Service Clouds with SLA constraints, Computacion y Sistemas, 2013, vol. 17, no. 3, pp. 401–411.Google Scholar
  11. 11.
    Matthias Splieth, S.B., Analyzing the Effect of Load Distribution Algorithms on Energy Consumption of Servers in Cloud Data Centers, 2015.Google Scholar
  12. 12.
    Tchernykh, A., Lozano, L., Schwiegelshohn, U., Bouvry, P., Pecero, J., and Nesmachnow, S., Energy-aware online scheduling: Ensuring quality of service for IaaS Clouds, International Conference on High Performance Computing Simulation (HPCS 2014), Bologna, Italy, 2014, pp. 911–918.Google Scholar
  13. 13.
    Tchernykh, A., Schwiegelsohn, U., Yahyapour, R., and Kuzjurin, N., Online hierarchical job scheduling on grids with admissible allocation, J. Scheduling, 2010, vol. 13, no. 5, pp. 545–552.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Tchernykh, A., Ramirez, J., Avetisyan, A., Kuzjurin, N., Grushin, D., and Zhuk, S., Two level job-scheduling strategies for a computational grid, Parallel Processing and Applied Mathematics, 6th International Conference on Parallel Processing and Applied Mathematics, Poznan, Poland, 2005, Wyrzykowski, R. et al., Eds., LNCS 3911, Springer-Verlag, 2006, pp. 774–781.CrossRefGoogle Scholar
  15. 15.
    Dorronsoro, B., Nesmachnow, S., Taheri, J., Zomaya, A., Talbi, E-G., Bouvry, P., A hierarchical approach for energy-efficient scheduling of large workloads in multicore distributed systems, Sustainable Comput.: Inform. Systems, 2014, vol. 4, pp. 252–261.Google Scholar
  16. 16.
    Tchernykh, A., Pecero, J., Barrondo, A., and Schaeffer, E., Adaptive energy efficient scheduling in peer-topeer desktop grids, Future Generation Comput. Systems, 2014, vol. 36, pp. 209–220.CrossRefGoogle Scholar
  17. 17.
    Ramirez, J.M., Tchernykh, A., Yahyapour, R., Schwiegelshohn, U., Quezada, A., Gonzalez, J., and Hirales, A., Job allocation strategies with user run time estimates for online scheduling in hierarchical grids. J. Grid Comput., 2011, vol. 9, pp. 95–116.CrossRefGoogle Scholar
  18. 18.
    Iturriaga, S., Nesmachnow, S., Dorronsoro, B., and Bouvry, P., Energy efficient scheduling in heterogeneous systems with a parallel multiobjective local search, Computing Informatics, 2013, vol. 32, no. 2, pp. 273–294.MathSciNetGoogle Scholar
  19. 19.
    Schwiegelshohn, U. and Tchernykh, A., Online scheduling for cloud computing and different service levels, 26th Int. Parallel and Distributed Processing Symposium, Los Alamitos, CA, 2012, pp. 1067–1074.Google Scholar
  20. 20.
    Tchernykh, A., Lozano, L., Schwiegelshohn, U., Bouvry, P., Pecero, J., Nesmachnow, S., and Drozdov, A., Online bi-objective scheduling for IaaS Clouds with ensuring quality of service, J. Grid Computing, Springer-Verlag, 2015. doi doi 10.1007/s10723-015-9340-0Google Scholar
  21. 21.
    Parallel Workload Archive, 2014. http://www.cs.huji.ac.il/labs/parallel/workload.Google Scholar
  22. 22.
    Grid Workloads Archive, 2014. http://gwa.ewi. tudelft.nl.Google Scholar
  23. 23.
    Zitzler, E., Evolutionary algorithms for multiobjective optimization: Methods and applications, PhD Thesis, Zurich: Swiss Federal Institute of Technology, 1999.Google Scholar
  24. 24.
    Tsafrir, D., Etsion, Y., and Feitelson, D., Backfilling using system-generated predictions rather than user runtime estimates, IEEE Trans. Parallel Distributed Systems, 2007, vol. 18, no. 6, pp. 789–803.CrossRefGoogle Scholar
  25. 25.
    Armenta-Cano, F., Tchernykh, A., Cortes-Mendoza, J.M., Yahyapour, R., Drozdov, A., Bouvry, P., Kliazovich, D., and Avetisyan, A., Heterogeneous job consolidation for power aware scheduling with quality of service, Proceedings of the 1st Russian Conference on Supercomputing–Supercomputing Days, Moscow, Russia, 2015, Voevodin, V. and Sobolev, S., CEUR-WS, 2015, vol. 1482, pp. 687–697. http://ceur-ws.org/Vol-1482/. URN: urn:nbn:de:0074-1482-7.Google Scholar
  26. 26.
    Rodriguez, A., Tchernykh, A., and Ecker, K., Algorithms for dynamic scheduling of unit execution time tasks, Europ. J. Operational Res., Elsevier Science, North-Holland, 2003, vol. 146, no. 2, pp. 403–416.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • F. A. Armenta-Cano
    • 1
  • A. Tchernykh
    • 1
  • J. M. Cortes-Mendoza
    • 1
  • R. Yahyapour
    • 2
  • A. Yu. Drozdov
    • 3
  • P. Bouvry
    • 4
  • D. Kliazovich
    • 4
  • A. Avetisyan
    • 5
  • S. Nesmachnow
    • 6
  1. 1.CICESE Research CenterEnsenadaMexico
  2. 2.University of GottingenGottingenGermany
  3. 3.Moscow Institute of Physics and TechnologyMoscowRussia
  4. 4.University of LuxembourgLuxembourgLuxembourg
  5. 5.ISP RASMoscowRussia
  6. 6.Universidad de la RepublicaMontevideoUruguay

Personalised recommendations