Advertisement

Programming and Computer Software

, Volume 42, Issue 4, pp 239–256 | Cite as

Program schemata technique for propositional program logics: A 30-year history

  • N. V. ShilovEmail author
  • S. O. Shilova
  • A. Yu. Bernshtein
Article
  • 39 Downloads

Abstract

A survey is presented of the so-called program schemata technique for proving the decidability of propositional program logics. This method is based on the reduction to versions of the problem of relative totality for nondeterministic Yanov schemata.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ball, T., Podelski, A., and Rajamani, S.K., Boolean and Cartesian abstraction for model checking C programs, Microsoft Research, 2000, MSR-TR-2000-115. http://researchmicrosoftcom/apps/pubs/defaultaspx?idi821.Google Scholar
  2. 2.
    Ben-Ari, M., Halpern, J.Y., and Pnueli, A., Deterministic propositional dynamic logic: Finite models, complexity, and completeness, J. Comput. Syst.Sci., 1982, vol. 25, no. 3, pp. 402–417.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bradfield, J., and Stirling, C., Modal mu-calculi, in The Handbook of Modal Logic, Blackburn, P., van Benthem, J., and Wolter, F., Eds., Elsevier, 2006, pp. 721–756.Google Scholar
  4. 4.
    Bruse, F., Friedmann, O., and Lange, M., Guarded transformation for the modal mu-calculus. http://arxiv. org/abs/1305.0648).Google Scholar
  5. 5.
    Buchi Weak Second Order Arithmetic and Finite Automata: The Collected Works of J. Richard Buchi, New York: Springer, 1990, pp. 398–424.Google Scholar
  6. 6.
    Chagrov, A. and Zakharyaschev, M., Modal Logic, Oxford: Oxford Univ. Press, 1997.zbMATHGoogle Scholar
  7. 7.
    Clarke, E.M., Grumberg, O., and Peled, D., Model Checking, MIT Press, 1999.Google Scholar
  8. 8.
    Cleaveland, R., Tableau-based model checking in the propositional mu-calculus, Acta Informatica, 1990, vol. 27, pp. 725–747.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Emerson, E.A. and Jutla, C.J., The complexity of tree automata and logics of programs, SIAM J. Comput., 1999, vol. 29, pp. 132–158.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fischer, M., and Ladner, R., Propositional dynamic logic of regular programs, J. Comput. Syst. Sci., 1979, vol. 18, pp. 194–211.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Harel, D., Kozen, D., and Tiuryn, J., Dynamic Logic, MIT Press, 2000.zbMATHGoogle Scholar
  12. 12.
    Kozen, D., Results on the propositional mu-calculus, Theor. Comput. Sci., 1983, vol. 27, pp. 333–354.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Nepomniaschy, V.A., and Shilov, N.V., Non-deterministic program schemata and their relation to dynamic logic, Int. Conf. on Math. Logic and Its Applications, Plenum Press, 1987, pp. 137–147.CrossRefGoogle Scholar
  14. 14.
    Podlovchenko, R.I., A.A. Lyapunov and A.P. Ershov in the theory of program schemes and the development of its logic concepts, Lect. Notes Comput. Sci., 2001, vol. 2244, pp. 8–23.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rabin, M.O., Decidability of second order theories and automata on infinite trees, Trans. ASM, 1969, vol. 141, pp. 1–35.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Rutledge, J.D., On Ianovs program schemata, JACM, 1964, vol. 11, no. 1, pp. 1–9.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Rutledge, J.D., Program schemata as automata. Part I, J.Comput. Syst. Sci., 1973, vol. 7, no. 6, pp. 543–578.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Shilov, N.V., Program schemata vs. automata for decidability of program logics, Theor. Comput. Sci., 1997, vol. 175, pp. 15–27.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Shilov, N.V., An approach to design of automata-based axiomatization for propositional program and temporal logics (by example of linear temporal logic), in Logic, Computation, Hierarchies. Series: Ontos Mathematical Logic, Brattka, V., Diener, H., and Spreen, D., Eds., Ontos-Verlag/De Gruyter, 2014, vol. 4, pp. 297–324.MathSciNetzbMATHGoogle Scholar
  20. 20.
    Shilov, N.V., Program schemata technique to solve propositional program logics revised, Post-Proceedings of 10th Ershov Informatics Conference PSI-2015 (25–27 August 2015, Innopolis, Kazan, Russia). To appear in Springer Lect. Notes Comput. Sci., 2016, vol. 9609.Google Scholar
  21. 21.
    Stirling, C., Modal and temporal logics, in Handbook of Logic in Computer Science, Abramsky, S., Gabbay, D.M., and Maibaum, S.E., Eds., Oxford: Oxford Univ. Press, 1992, vol. 2, pp. 477–563.MathSciNetGoogle Scholar
  22. 22.
    Streett, R., Propositional dynamic logic of looping and converse is elementary decidable, Inf. Control, 1982, vol. 54, pp. 121–141.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tarski, A., A lattice-theoretical fixpoint theorem and its applications, Pac. J. Math., 1955, vol. 5, pp. 285–309.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    The Description Logic Handbook: Theory, Implementation, Applications, Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., and Patel-Schneider, P.F., Eds., Cambridge: Cambridge Univ. Press, 2003.Google Scholar
  25. 25.
    Schlingloff, B.-H., On the expressive power of modal logics on trees, Lect. Notes Comput. Sci., 1992, vol. 620, pp. 441–451.Google Scholar
  26. 26.
    Valiev, M.K., Decision complexity of variants of propositional dynamic logic, Lect. Notes Comput. Sci., 1980, vol. 88, pp. 656–664.CrossRefzbMATHGoogle Scholar
  27. 27.
    Vardi, M.Y. and Wolper, P., Automata-theoretic techniques for modal logics of programs, J. Comput. Syst. Sci., 1986, vol. 32, no. 2, pp. 183–221.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Walukiewicz, I., A complete deductive system for the mu-calculus, Proc. IEEE LICS’93, 1993, pp. 136–147.Google Scholar
  29. 29.
    Walukiewicz, I., Completeness of Kozen’s axiomatisation of the propositional Mu-calculus, Information and Computation, 2000, vol. 157, pp. 142–182.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zakharov, V.A., An efficient and unified approach to the decidability of equivalence of propositional programs, Lect. Notes Comput. Sci., 1998, vol. 1443, pp. 247–258.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Bodin, E.V., Shilov, N.V., and Ii, K.O., Programs logics made simple, in System Informatics: Collection of Scientific Works, Novosibirsk: Nauka, 2003, issue 8, pp. 206–249.Google Scholar
  32. 32.
    Ershov, A.P., On Yanov’s operator schemata, in Problems of Cybernatics: Collection of Scientific Works, Moscow: Nauka, 1968, issue 20, pp. 181–200.Google Scholar
  33. 33.
    Ershov, A.P., Introduction to Theoretical Programming (Talks on a Method): A Textbook, Moscow: Nauka, 1977. Engl. transl. Origins of Programming: Discourses on Methodology, New York: Springer, 1990.Google Scholar
  34. 34.
    Karpov, Yu.G., Model Checking: Verification of Parallel and Distributed Program Schemata, St. Petersburg: BKhV-Peterburg, 2009.Google Scholar
  35. 35.
    Kotov, V.E. and Sabel’fel’d, V.K., Theory of Program Schemata, Moscow: Nauka, 1991.zbMATHGoogle Scholar
  36. 36.
    Kfuri, A.D., Stolboushkin, A.P., and Uzhichin, P., Some open problems in the theory of program schemata and dynamical logics, Usp. Mat. Nauk, 1989, vol. 44. no. 1 (265), pp. 35–55.MathSciNetGoogle Scholar
  37. 37.
    Nepomnyashchii, V.A. and Ryakin, O.M., Applied Methods of Program Verification, Moscow: Radio i Svyaz’, 1988.Google Scholar
  38. 38.
    Nepomnyashchii, V.A., and Shilov, N.V., Nondeterministic program schemata and their relation to dynamical logic, Kibernetika, 1988, no. 3, pp. 12–19.MathSciNetGoogle Scholar
  39. 39.
    Odintsov, S.P., Speranskii, S.O., and Drobyshevich, S.A., Introduction to Nonclassical Logics: A Textbook for Novosibirsk State University, Novosibirsk: RITs Novosibirsk. Gos. Univ., 2014.Google Scholar
  40. 40.
    Podlovchenko, R.I., From Yanov schemata to the theory of program models, Mathematical Problems of Cybernetics, Yablonskii, S.V., Ed., Moscow: Nauka, Fizmatlit, 1998, issue 7, pp 281–302.Google Scholar
  41. 41.
    Shilov, N.V., Formalisms and tools for designing and maintaining ontology, System Informatics, Marchuk, A.G., Ed., Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2009, issue 11, pp. 10–48.MathSciNetGoogle Scholar
  42. 42.
    Shilov, N.V., Principles of Syntax, Semantics, Translation, and Verification of Programs, Novosibirsk: Novosibirsk. Gos. Univ., 2011.Google Scholar
  43. 43.
    Shilov, N.V., Bernshtein, A.Yu., and Shilova, S.O., Application of nondeterministic monadic program schemata to the study of the properties of program logics with fixed points, International Conference Mal’tsev Meeting, Novosibirsk, November 11–15, 2013, Novosibirsk: Inst. Mat., Sib. Otd., Ross. Akad. Nauk, 2013, p. 58. http://wwwmathnscru/conference/malmeet/ 13/maltsev13pdf.Google Scholar
  44. 44.
    Shilov, N.V., Shilova, S.O., and Bernshtein, A.Yu., Generalized totality of nondeterministic Yanov schemata and decidability of a program logic with fixed points, Modern Information Technologies and IT-Education: Collection of Selected Works from the IX International Research and Practice Conference, Moscow State University, November 14–16, 2013, Sukhomlin, V.A., Ed., Moscow: Mosk. Gos. Univ., 2014.Google Scholar
  45. 45.
    Yanov, Yu.I., On logical algorithmic schemata, in Problems of Cybernetics: Collection of Scientific Works, Moscow: Nauka, 1958, issue 1, pp. 75–127.Google Scholar
  46. 46.
    Yanov, Yu.I., On local transformations of algorithmic schemata, in Problems of Cybernetics: Collection of Scientific Works, Moscow: Nauka, 1968, issue 20, pp. 201–216.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. V. Shilov
    • 1
    Email author
  • S. O. Shilova
    • 1
  • A. Yu. Bernshtein
    • 2
  1. 1.Ershov Institute of Informatics SystemsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations