Advertisement

Programming and Computer Software

, Volume 41, Issue 5, pp 295–301 | Cite as

Photorealistic volume scattering model in the bidirectional stochastic ray tracing problem

  • D. D. Zhdanov
  • A. A. Garbul
  • I. S. Potemin
  • A. G. VoloboyEmail author
  • V. A. Galaktionov
  • S. V. Ershov
  • V. G. Sokolov
Image Processing

Abstract

This paper is devoted to the development of physically correct rendering model of scenes containing volume scattering objects. The solution of the rendering equation is based on the Monte-Carlo bidirectional ray tracing. Two efficient approaches to the solution of the rendering equation for different parameters of the volume scattering medium (typically, concentration of scattering particles) are developed. Examples illustrate how the proposed models can be used for photorealistic visualization of scenes containing volume scattering objects and for the simulation of illuminators based on the volume scattering effect. Possible limitations of the application field of the proposed models are considered.

Keywords

Volume Scattering Light Guide Scene Image Extinction Cross Section Scene Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kajiya, J.T., The rendering equation, in Proc. of the Computer Graphics Conf. (SIGGRAPH '86), 1986, vol. 20, pp. 143–150.CrossRefGoogle Scholar
  2. 2.
    Wann, J.H. and Per, C., High quality rendering using ray tracing and photon mapping, in ACM SIGGRAPH 2007 courses. SIGGRAPH’07, New York: ACM, 2007. http://doi.acm.org/10.1145/1281500.1281593Google Scholar
  3. 3.
    Pharr, M. and Humphreys, G., Physically Based Rendering: From Theory to Implementation, 2nd ed., San Francisco: Morgan Kaufmann, 2010.Google Scholar
  4. 4.
    Hachisuka, T. and Wann, J.H.. Stochastic progressive photon mapping, ACM Trans. Graph, 2009, vol. 28. no. 5, pp. 141:1–141:8. http://doi.acm.org/10.1145/1618452.1618487CrossRefGoogle Scholar
  5. 5.
    Bohren, C.F. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, New York: Wiley 1983.Google Scholar
  6. 6.
    Lumicept: Hybrid Light Simulation Software, http://www.integra.jp/enGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • D. D. Zhdanov
    • 1
    • 2
    • 3
  • A. A. Garbul
    • 2
    • 3
  • I. S. Potemin
    • 1
    • 2
  • A. G. Voloboy
    • 2
    Email author
  • V. A. Galaktionov
    • 2
  • S. V. Ershov
    • 2
  • V. G. Sokolov
    • 2
  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  2. 2.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia
  3. 3.Vavilov State Optical Institute, Kadetskaya liniyaSt. PetersburgRussia

Personalised recommendations