Advertisement

Programming and Computer Software

, Volume 41, Issue 5, pp 253–257 | Cite as

Practical approach to the fast Monte-Carlo ray-tracing

  • A. M. GruzdevEmail author
  • V. A. Frolov
  • A. V. Ignatenko
Article
  • 89 Downloads

Abstract

The paper proposes a new high-quality approach to fast Monte-Carlo path-tracing. The key feature of the approach is screen-space filtering with the help of additional information (depth, normal direction, etc.) of the illumination separated from material color. It allows to reach high-quality and edge-aware filtering. The proposed method yields 1–2 times speed-up without putting significant restrictions on the raytracing algorithm.

Keywords

path-tracing multidimensional filtering indirect illumination global illumination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ritschel, T., Dashsbacher, C., Grosch, T., and Kautz, J., The state of the art in interactive global illumination, Comput. Graphics Forum, 2012, vol. 31, pp. 160–188.CrossRefGoogle Scholar
  2. 2.
    Pharr, M. and Humphreys, G., Physically Based Rendering: From Theory to Implementation, San Francisco: Morgan Kaufmann, 2004.Google Scholar
  3. 3.
    Kontkanen, J., Rasanen, J., and Keller, A., Irradiance filtering for Monte Carlo ray tracing, Monte Carlo and Quasi-Monte Carlo Methods, Berlin: Springer, 2006, pp. 259–272.Google Scholar
  4. 4.
    Suykens, F. and Willems, Y., Adaptive filtering for progressive Monte-Carlo image rendering, Proc. WSCG 2000, 2000.Google Scholar
  5. 5.
    Silverman, B., Density Estimation for Statistics and Data Analysis, London: Chapmann and Hall, 1986.CrossRefzbMATHGoogle Scholar
  6. 6.
    Gastal, E. and Oliveira, M., Adaptive manifolds for real-time high-dimensional filtering, ACM Trans. Graphics, 2012, vol. 31, no. 4, article 33.CrossRefGoogle Scholar
  7. 7.
    Kornprobst, P. and Tumblin, J., Bilateral Filtering: Theory and Applications, Now Publishers, 2009.Google Scholar
  8. 8.
    Dammertz, H., Sewtz, D., Hanika, J., and Lensch, H., Edge-avoiding A-Trous wavelet transform for fast global illumination filtering, Proc. of the Conf. on High Performance Graphics, 2010, pp. 67–75.Google Scholar
  9. 9.
    Holschneider, M., Kronald-Martinet, R., Morlet, J., and Tchamitchian, P., A Real-Time Algorithm for Signal Analysis with the Help of the Wavelet Transform, New York: Springer, 1989.CrossRefGoogle Scholar
  10. 10.
    Hachicuka, T., Wojciech, J., Weistroffer, R., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H., Multidimensional adaptive sampling and reconstruction for ray tracing, ACM Trans. Graphics, 2008, vol. 27, no. 3, article 33.Google Scholar
  11. 11.
    Rousselle, F., Knaus, C., and Zwicker, M., Adaptive sampling and reconstruction using greedy error minimization, Proc. of 2011 SIGGRAPH Asia Conf. (New York, 2011), New York: ACM, 2011, pp. 159:1–159:12.Google Scholar
  12. 12.
    Lehmann, E. and Casella, G., Theory of Point Estimation, New York: Springer, 1998.zbMATHGoogle Scholar
  13. 13.
    Rousselle, F., Knaus, G., and Zwicker, M., Adaptive rendering with non-local means filtering, ACM Trans. Graphics, 2012, vol. 31, no. 6, p. 195.CrossRefGoogle Scholar
  14. 14.
    Buades, A., Coll, B., and Morel, J.M., A non-local algorithm for image denoising, Proc. of IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2005, vol. 2, pp. 60–65.Google Scholar
  15. 15.
    He, K., Sun, J., and Tang, X., Guided image filtering, Computer Vision-ECCV 2010, Berlin: Springer, 2010, pp. 1–14.CrossRefGoogle Scholar
  16. 16.
    Bauszat, P., Eisemann, M., and Magnor, M., Guided image filtering for interactive highquality global illumination, Comput. Graphics Forum, 2011, vol. 30, no. 4, pp. 1361–1368.CrossRefGoogle Scholar
  17. 17.
    Doidge, I. and Jones, M., Probabilistic illuminationaware filtering for Monte Carlo rendering, The Visual Comput., 2013, vol. 29, nos. 6–8, pp. 707–716.CrossRefGoogle Scholar
  18. 18.
    Sen, P. and Darabi, S., On filtering the noise from the random parameters in Monte-Carlo rendering, ACM Trans. Graphics, 2012, vol. 31, no. 3.Google Scholar
  19. 19.
    Leler, W., Human vision, anti-aliasing, and the cheap 4000 line display, ACM SIGGRAPH Comput. Graphics, 1980, vol. 14, no. 3, pp. 308–313.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. M. Gruzdev
    • 1
    Email author
  • V. A. Frolov
    • 2
  • A. V. Ignatenko
    • 1
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Keldysh Institute for Applied MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations