Advertisement

Programming and Computer Software

, Volume 40, Issue 5, pp 250–258 | Cite as

Program models for diagnosis of information control systems

  • G. V. Bezmen
  • N. V. KolesovEmail author
Article

Abstract

A problem of developing diagnosis procedures, which is posed when creating system software, is discussed. Most often, the procedures consist in using test programs. However, for the information-measuring and information-control systems, the functional diagnosis programs that test the system in the course of problem solving are proved useful. An approach to developing such programs based on the system model is proposed.

Keywords

Membership Function Technical State Fault Diagnosis Signal Space Diagnosis Tool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ignat’ev, M.B., Mironovskii, L.A., and Yudovich, V.S., Kontrol’ i diagnostika robototekhnicheskikh sistem (Control and Diagnostics of Robotic Systems), Leningrad: Izd. LIAP, 1985.Google Scholar
  2. 2.
    Kolesov, N.V., Mnogourovnevoe proektirovanie sredstv testovogo i funktsional’nogo diagnostirovaniya specializirovannykh vychislitelnykh kompleksov (Multilevel Designing of Tools for Test and Fictional Diagnosis of Special-Purpose Computer Complexes), Leningrad: Izd. TsNII Rumb, 1992.Google Scholar
  3. 3.
    Dmitriev, S.P., Kolesov, N.V., and Osipov, A.V., Informatsionnaya nadezhnost’, kontrol’ i diagnostika navigatsionnykh system (Information Reliability, Control, and Diagnosis of Navigation Systems), St. Petersburg: Izd. TsNII Elektropribor, 2003.Google Scholar
  4. 4.
    Koshaev, D.A., Information control and recovery of navigation complexes for a great number of fault types and uncertainty of their models, Gyroskopy Navig., 2007, no. 4, pp. 47–59.Google Scholar
  5. 5.
    Grishin, Yu.P. and Kazarinov, Yu.M., Dinamicheskie sistemy, ustoichivye k otkazam (Fault-Tolerant Dynamic System), Moscow: Radio svyaz’, 1985.Google Scholar
  6. 6.
    Mironovskii, L.A., Funktsional’noe diagnostirovanie dinamicheskikh sistem (Functional Diagnosis of Dynamic Systems), Moscow: Izd. MGU-GRIF, 1998.Google Scholar
  7. 7.
    Zhirabok, A.N. and Shumskii, A.E., Metody i algoritmy funktsional’nogo diagnostirovaniya slozhnykh tekhnicheskikh sistem (Methods and Algorithms of Functional Diagnosis of Complex Technical Systems), Vladivostok: Izd. DVGTU, 2007.Google Scholar
  8. 8.
    Shumskii, A.E. and Zhirabok, A.N., Metody i algoritmy diagnostirovaniya i otkazoustoichivogo upravleniya dinamicheskimi sistemami (Methods and Algorithms of Diagnosis and Fault-Tolerant Control of Dynamic Systems), Vladivostok: Izd. DVGTU, 2009.Google Scholar
  9. 9.
    Bezmen, G.V. and Kolesov, N.V., Functional diagnosis of linear dynamic systems using the fuzzy analysis, Inf.-Upr. Sist., 2009, no. 6.Google Scholar
  10. 10.
    Rakityanskaya, A.B. and Rotshtein, A.P., Fuzzy relation-based diagnosis, Autom. Remote Control, 2007, vol. 68, no. 12, pp. 2198–2213.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Blinov, A.N. and Osipov, A.V., Diagnosis of parametric faults using fuzzy methods, 10-aya Mezhdunarodnaya konferentsiya po myagkim vychisleniyam i izmereniyam (Proc. 10th Int. Conf. on Soft Computing and Measurements), St. Petersburg, 2007, pp. 224–229.Google Scholar
  12. 12.
    Bezmen, G.V. and Kolesov, N.V., Functional diagnosis of linear dynamic systems using the fuzzy analysis, Izv. RAN. Teoriya sistemy upravleniya, 2011, no. 3, pp. 3–12.Google Scholar
  13. 13.
    Phillips, C.L. and Harbor, R.D., Feedback Control Systems, Prentice Hall, 1991.Google Scholar
  14. 14.
    Andreev, Yu.N., Upravlenie konechnomernymi lineinymi ob”ektami (Control of Finite-Dimensional Linear Objects), Moskow: Nauka, 1976.Google Scholar
  15. 15.
    Patton, R.J., Frank, P.M., and Clark, R.N., Issues in Fault Diagnosis for Dynamic Systems, London: Springer, 2000.CrossRefGoogle Scholar
  16. 16.
    Frank, P.M., Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: a survey and some new results, Automatica, 1990, vol. 26, pp. 459–474.CrossRefzbMATHGoogle Scholar
  17. 17.
    Clark, R.N., A simplified instrument detection scheme, IEEE Trans. Aerospace Electron. Syst., 1978, vol. 14, pp. 558–563 and 456–465.CrossRefGoogle Scholar
  18. 18.
    Isermann, R., Model-based fault detection and diagnosis: status and applications, Proc. 16th IFAC Symp. on Automatic Control in Aerospace, 2004, St. Petersburg, pp. 150–157.Google Scholar
  19. 19.
    Willsky, A.S., A survey of design methods for failure detection systems, Automatica, 1976, vol. 12, pp. 601–611.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Frank, P.M., Advanced fault detection and isolation schemes using nonlinear and robust observers, Proc. of the 10th IFAC Congress, 1987, Munchen, vol. 3, pp. 63–68.Google Scholar
  21. 21.
    Koscielny, J.M., Application of fuzzy logic for fault isolation in a three-tank system, Proc. of the 14th IFAC World Congress, Beijing, 1999, vol. 7, pp. 73–78.Google Scholar
  22. 22.
    Mendonca, L.F, Sousa, J.M.C., and Si da Cos, J.M.G., Fault isolation using fuzzy model-based observers, Proc. 6th IFAC Symp. on Fault Detection, 2006, Beijing, pp. 142–150.Google Scholar
  23. 23.
    Koscielny, J.M. and Syfert, M., Fuzzy diagnostic reasoning that takes into account the uncertainty of the relation between faults and symptoms, Int. J. Appl. Math. Comput. Sci., 2006, vol. 16, no. 1, pp. 27–35.MathSciNetGoogle Scholar
  24. 24.
    Misava, E.A. and Hedrick, J.K., Nonlinear observers: a state of the art survey, J. Dyn. Syst., Meas., Control, 1989, vol. 111, pp. 344–352.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.State Research Center of the Russian Federation Concern CSRI ElektropriborSt. PetersburgRussia

Personalised recommendations