Advertisement

Programming and Computer Software

, Volume 39, Issue 4, pp 163–181 | Cite as

Formalization of a test experiment-II

  • I. B. Bourdonov
  • A. S. Kossatchev
Article

Abstract

The paper develops the approach to testing considered in [1]. A formal model of test interaction of the most general type and reduction-type conformance are proposed for which there is hardly any dependence between errors. It is shown that many known types of conformance in various interaction semantics are particular cases of this general model. The paper is devoted to the problem of dependence between errors defined by specification and to the related problem of optimization of tests. There is dependence between errors if there exists a strict subset of errors such that any nonconformal implementation (i.e., implementation that contains some error) contains an error from this subset. Accordingly, it is sufficient that the tests detect errors only from this subset. In the general model proposed, the dependence between errors may arise when one chooses, as a class of implementations under test, some strict subset of the class of all implementations. Partial interaction semantics and/or various implementation hypotheses (in particular, a safety hypothesis) precisely suggest that an implementation under test is not arbitrary but belongs to some subclass of (safe) implementations.

Keywords

External Action Imple Mentation Primary Error Loop Transition Additional Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V., Formalization of test experiments, Programmirovanie, 2007, no. 5, pp. 3–32 [Program. Comput. Software (Engl. Transl.), vol. 33, no. 5, pp. 239–260].Google Scholar
  2. 2.
    Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V., Teoriya sootvetstviya dlya sistem s blokirovkami i razrusheniem (Conformance Theory for Systems with Blockings and Destruction), Moscow: Nauka, 2008.Google Scholar
  3. 3.
    Bourdonov, I.B., and Kossatchev, A.S., Systems with priorities: Conformance, testing, and composition, Tr. Inst. Syst. Program, 2008, no. 14.1.Google Scholar
  4. 4.
    Bourdonov, I.B., and Kossatchev, A.S., Systems with priorities: Conformance, testing, and composition, Programmirovanie, 2009, no. 4, pp. 24–40 [Program. Comput. Software (Engl. Transl.), vol. 35, no. 4, pp. 198–211].Google Scholar
  5. 5.
    Bourdonov, I.B., Teoriya konformnosti (Funktsional’noe testirovanie programmnykh system na osnove formal’nykh modelei) (Conformance Theory: Functional Testing of Software Systems on the Basis of Formal Models), Saarbrucken: LAP LAMBERT Academic Publ., 2011.Google Scholar
  6. 6.
    Bourdonov, I.B., and Kossatchev, A.S., Elimination of Nonconformal Paths from Specification, Preprint of Inst. of System Programming, Moscow, 2011, no. 23.Google Scholar
  7. 7.
    Bourdonov, I.B., and Kossatchev, A.S., Specification completion for ioco, Programmirovanie, 2011, no. 1.Google Scholar
  8. 8.
    Bourdonov, I.B., and Kossatchev, A.S., Dependence between errors on the classes of tested implementations, Tr. Inst. Syst. Program., 2013, no. 23.Google Scholar
  9. 9.
    Bernot, G., Testing against formal specifications: A theoretical view, TAPSOFT’91, 1991, vol. 2, pp. 99–119, Abramsky, S. and Maibaum, T.S.E., Eds., Lecture Notes in Computer Science, Springer, 1991, vol. 494.CrossRefGoogle Scholar
  10. 10.
    van Glabbeek, R.J., The linear time—branching time spectrum, Proc. of CONCUR’90, Baeten, J.C.M. and Klop, J.W., Eds., Lect. Notes Comput. Sci., Springer, 1990, vol. 458, pp. 278–297.CrossRefGoogle Scholar
  11. 11.
    van Glabbeek, R.J., The linear time—branching time spectrum II: The semantics of sequential processes with silent moves, Proc. of CONCUR’93 (Hildesheim, Germany, 1993), Best, E., Ed., Lect. Notes Comput. Sci., Springer, 1993, vol. 715, pp. 66–81.CrossRefGoogle Scholar
  12. 12.
    Hoare, C.A.R., Communicating sequential processes. in On the Construction of Programs—An Advanced Course, McKeag, R.M. and Macnaghten, A.M., Eds., Cambridge: Cambridge Univ. Press, 1980, pp. 229–254.Google Scholar
  13. 13.
    Revised Working Draft on “Framework: Formal Methods in Conformance Testing,” JTC1/SC21/WG1/Project 54/1, in ISO Interim Meeting /ITU-T, Paris, 1995.Google Scholar
  14. 14.
    Tretmans, J., Conformance testing with labelled transition systems: Implementation relations and test generation, Comput. Networks ISDN Syst., 1996, vol. 29, no. 1, pp. 49–79.CrossRefGoogle Scholar
  15. 15.
    Tretmans, J., Test generation with inputs, outputs and repetitive quiescence, in Software-Concepts and Tools, 1996, vol. 17, issue 3.Google Scholar
  16. 16.
    da Silva Simao, A., Petrenko, A., and Yevtushenko, N., Generating Reduced Tests for FSMs with Extra States, TestCom/FATES 2009: 129–145.Google Scholar
  17. 17.
    Petrenko, A., and Yevtushenko, N., Testing from partial deterministic FSM specifications, IEEE Trans. Comput, 2005, vol. 54, no. 9, pp. 1154–1165.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute for System ProgrammingRussian Academy of SciencesMoscowRussia

Personalised recommendations