Advertisement

Complete open-state testing of limitedly nondeterministic systems

  • I. B. Bourdonov
  • A. S. Kossatchev
Article

Abstract

An approach to the problem of complete testing is proposed. Testing is interpreted as the check of an implementation’s conformance to the given requirements described by a specification. The completeness means that a test suite finds all the possible implementation errors. In practice, testing must end in a finite amount of time. In the general case, the requirements of completeness and finiteness contradict each other. However, finite complete test suites can be constructed for certain classes of implementations and specifications provided that there are specific test capabilities. Test algorithms are proposed for finite specifications and finite implementations with limited nondeterminism for the case of open-state testing. The complexity of those algorithms is estimated.

Keywords

Test Suite Finite State Machine Label Transition System Imple Mentation Test Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V., Formalization of Test Experiments, Programmirovanie, 2007, no. 5, pp. 3–32 [Programming Comput. Software (Engl. Transl.), 2007, vol. 33, no. 5, pp. 239–260].Google Scholar
  2. 2.
    Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V., Teoriya sootvetstviya dlya system s blokirovkami i razrusheniem (Conformance Theory for Systems with Refusals and Destruction), Moscow: Nauka, 2008.Google Scholar
  3. 3.
    Bourdonov, I.B., Conformance Theory for the Functional Testing of Software Systems Based on Formal Models, Doctoral (Math.) Dissertation, Moscow: Institute for System Programming, Russian Academy of Sciences, 2008; http://www.ispras.ru/~RedVerst/RedVerst/Publications/TR-01-2007.pdf.Google Scholar
  4. 4.
    van Glabbeek, R.J., The Linear Time—Branching Time Spectrum, Proc. of CONCUR’90, Baeten, J.C.M. and Klop, J.W., Eds., Lect. Notes Comput. Sci., 1990, vol. 458, pp. 278–297.Google Scholar
  5. 5.
    van Glabbeek, R.J., The Linear Time—Branching Time Spectrum II: The Semantics of Sequential Processes with Silent Moves, Proc. of CONCUR’93, Hildesheim, Germany, 1993, Best, E., Ed., Lect. Notes Comput. Sci., 1993, vol. 715, pp. 66–81.Google Scholar
  6. 6.
    Milner, R., Modal Characterization of Observable Machine Behavior, Proc. CAAP, 1981, Astesiano, G. and Bohm, C. Eds., Lect. Notes Comput. Sci., 1981, vol. 112, pp. 25–34.Google Scholar
  7. 7.
    Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V., Irredundant Algorithms for Traversing Directed Graphs: The Nondeterministic Case, Programmirovanie, 2004, no. 1, pp. 4–24 [Programming Comput. Software (Engl. Transl.), 2004, vol. 30, no. 1, pp. 2–17].Google Scholar
  8. 8.
    Blass, A., Gurevich, Y., Nachmanson, L., and Veanes, M., Play to Test Microsoft Research, Techn. Report, MSR-TR-2005-04, 2005, 5th Int. Workshop on Formal Approaches to Testing of Software (FATES 2005), Edinburgh, 2005.Google Scholar
  9. 9.
    Fujiwara, S. and Bochmann, G.V., Testing Nondeterministic Finite State Machine with Fault Coverage, in Proc. of the Fourth IFIP TC6 Int. Workshop on Protocol Test Systems, 1991, Kroon, J., Heijing, R.J., and Brinksma, E., Eds., North-Holland, 1992, pp. 267–280.Google Scholar
  10. 10.
    Milner, R., Calculus of Communicating Processes, Lect. Notes Comput. Sci., 1982, vol. 92.Google Scholar
  11. 11.
    Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V., Irredundant Algorithms for Traversing Directed Graphs: The Deterministic Case, Programmirovanie, 2003, no. 5, pp. 11–30 [Programming Comput. Software (Engl. Transl.), 2003, vol. 29, no. 5, pp. 245–258].Google Scholar
  12. 12.
    Kuliamin, V.V., Petrenko, A.K., Kossatchev, A.S., and Bourdonov, I.B., The UniTesK Approach to Designing Test Suites, Programmirovanie, 2003, no. 6, pp. 25–34 [Programming Comput. Software (Engl. Transl.), 2003, vol. 29, no. 6, pp. 310–322].Google Scholar
  13. 13.
    Petrenko, A., Yevtushenko, N., and Bochmann, G.V., Testing Deterministic Implementations from Nondeterministic FSM Specifications, in Selected Proc. of the 9th IFIP TC6 Int. Workshop on Testing of Communicating Systems, 1996.Google Scholar
  14. 14.
    Goodenough, J.B. and Gerhart, S.L., Toward a Theory of Test Data Selection, IEEE Trans. Software Eng., 1975, vol. SE-1, no. 2, pp. 156–173.MathSciNetGoogle Scholar
  15. 15.
    Grochtmann, M. and Grimm, K., Classification Trees for Partition Testing, Software Testing, Verificcation and Reliability, 1993, no. 3, pp. 63–82.Google Scholar
  16. 16.
    Zhu, Hall, May, Software Unit Test Coverage and Adequacy, ACM Comput Surveys, 1997, vol. 29, no. 4.Google Scholar
  17. 17.
    Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V., Application of Finite Automatons for Program Testing, Programmirovanie, 2000, no. 2, pp. 12–28 [Programming Comput. Software (Engl. Transl.), 2000, vol. 26, no. 2, pp. 61–73].Google Scholar
  18. 18.
    Vasilevskii, M.P., On the Detection of Faults in an Automaton, Kibernetika, 2973, vol. 9, no. 4, pp. 93–108.Google Scholar
  19. 19.
    Aho, A.V., Dahbura, A.T., Lee, D., and Uyar, M.Ü., Optimization Technique fpr Protocol Conformance Test Generation Based on UID Sequences and Rural Chinese Postman Tours, IEEE Trans. Commun., 1991, vol. 3, no. 11, pp. 1604–1615.CrossRefGoogle Scholar
  20. 20.
    Lee, D. and Yannakakis, M., Testing Finite State Machines: State Identification and Verification, IEEE Trans. Comput., 1994, vol. 43, no. 3, pp. 306–320.CrossRefMathSciNetGoogle Scholar
  21. 21.
    Lee, D. and Yannakakis, M., Principles and Methods of Testing Finite State Machines—A Survey, in Proc. of the IEEE 84, 1996, no. 8, pp. 1090–1123.Google Scholar
  22. 22.
    Legeard, B., Peureux, F., and Utting, M., Automated Boundary Testing from Z and B, Proc. of the Int. Conf. on Formal Methods Europe, FME’02, Lect. Notes Comput. Sci., 2002, vol. 2391, pp. 21–40.Google Scholar
  23. 23.
    Bourdonov, I.B., Traversal of an Unknown Directed Graph by a Finite Robot, Programmirovanie, 2004, no. 4, pp. 11–34 [Programming Comput. Software (Engl. Transl.), 2004, vol. 30, no. 4, pp. 188–203].Google Scholar
  24. 24.
    Bourdonov, I.B., Backtracking Problem in the Traversal of an Unknown Directed Graph by a Finite Robot, Programmirovanie, 2004, no. 6, pp. 6–29 [Programming Comput. Software (Engl. Transl.), 2004, vol. 30, no. 6, pp. 305–322].Google Scholar
  25. 25.
    Bourdonov, I.B., Examination of Unidirectional and Bidirectional Distributed Networks by a Finite Robot, Trudy Vserossiiskoi konferentsii nauchnyi servis v seti Internet (Proc. of the All-Russia Conf. on the Research Services on the Internet), 2004.Google Scholar
  26. 26.
    Edmonds, J. and Johnson, E.L., Matching, Euler Tours, and the Chinese Postman, Math. Programm., 1973, no. 5, pp. 88–124.Google Scholar
  27. 27.
    Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V., “Security, Verification, and Conformance Theory,” in Materialy vtoroi mezhdunarodnoi nauchnoi konferentsii po problemam bezopasnosti i protivideistviya terrorizmu (Proc. of the Second Int. Conf. on Security Problems and Terrorism Counteractions), Moscow: MNTsMO, 2007.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute for System ProgrammingRussian Academy of SciencesMoscowRussia

Personalised recommendations