Conceptual and ontological modeling in information systems


Conceptual modeling of a subject domain, which produces its conceptual model, is an important stage in designing information systems. In recent years, much attention in the development of such systems has been given to reusing information resources and to providing access to them at the semantic level. Methods and technologies of ontological modeling have lately been under intensive development. In this paper, problems and preconditions of conceptual modeling of the subject domain in database technologies and information systems are discussed. Various approaches to conceptual modeling, conceptual modeling languages, and the respective tools are considered, various interpretations of the role of the conceptual model of the subject domain are discussed, and the current state of conceptual modeling tools produced by software industry is assessed. The relationships between the conceptual schemas of the subject domain and ontologies are analyzed and their similarities and differences are described. Terminological issues and the directions of research in the field of conceptual and ontological modeling are considered. An extensive list of references is given.

This is a preview of subscription content, access via your institution.


  1. 1.

    Bachman, C.W., Data Structure Diagrams, Database, 1969, no. 1–2, pp. 4–10.

  2. 2.

    Boiko V.V. and Savinkov, V.M., Proektirovanie informatsionnoi bazy avtomatizirovannoi sistemy na jsnove SUBD (Designing Information Base for an Automated System using DBMS), Moscow: Finansy i statistika, 1982.

    Google Scholar 

  3. 3.

    ANSI/X3/SPARC Study Group on Database Management Systems, Interim Report, ACM SIGFDT Bull., 1975, vol. 7, no. 2.

  4. 4.

    On Conceptual Modelling. Perspectives from Artificial Intelligence, Databases, and Programming Languages Brodie, M.L., Mylopoulos, J., and Schmidt, J.W., Eds., Springer, 1984.

  5. 5.

    MacLeod, D. and Smith J.M., Abstraction in Databases, Proc. of the ACM SIGMOD Workshop on Data Abstraction, Databases, and Conceptual Modeling, Pingree Park, Colorado, 1980, SIGMOD Record, 1980, vol. 11, no. 2.

  6. 6.

    Briukhov, D.O., Vovchenko, A.E., Zakharov, V.N., Zhelenkova, O.P., Kalinichenko, L.A., Martynov, D.O., Skvortsov, N.A., and Stupnikov, S.A., Architecture of the Intermediate Level of Subject Mediators for Solving Problems over the Set of Integrated Heterogeneous Distributed Information Resources in a Hybrid Grid Infrastructure of Virtual Observatories, Inform. Ee Primen., 2008, vol. 2, no. 1.

  7. 7.

    Vendrov, A.M., Proektirovanie programmnogo obespecheniya ekonomicheskikh informatsionnykh system (Designing Software for Economic Information Systems) Moscow: Finansy i statistika, 2005.

    Google Scholar 

  8. 8.

    Zakharov, V.N., Kalinichenko, L.A., Sokolov, I.A., and Stupnikov, S.A., Designing Canonical Information Models for Integrated Information Systems, Inform. Ee Primen., 2007, vol. 1, no. 2.

  9. 9.

    Kogalovsky, M.R., Entsiklopediya tekhnologii baz dannykh (Encyclopedia of Database Technologies) Moscow: Finansy i statistika, 2005.

    Google Scholar 

  10. 10.

    Tsichritzis, D. and Klug, A. (Eds.) ANSI/X3/SPARC DBMS Framework, Inf. Syst., 1978, no. 3.

  11. 11.

    CODASYL DBTG Report, 1969.

  12. 12.

    CODASYL Data Definition Language Committee Journal of Development, January 1978.

  13. 13.

    Senko, M.E., Altman, E.B., Astrahan, M.M., and Fehder, P.L., Data Structures and Accessing in Data Base Systems, IBM Syst. J., 1973, vol. 12, no. 1.

  14. 14.

    Senko, M.E., DIAM as a Detailed Example of the ANSI/SPARC Architecture, Proc. of the IFIP Working Conf. on Modelling in Data Base Management Systems, Nijssen, G.M., Ed., North-Holland, 1976.

  15. 15.

    Senko, M.E., DIAM II: The Binary Infological Level and Its Database Language—FORAL, Proc. of the SIGPLAN Conf. on Data: Abstraction, Definition, and Structure, Salt Lake City, Utah, 1976.

  16. 16.

    Senko, M.E., Conceptual Schemas, Abstract Data Structures, Enterprise Descriptions, Int. Comp. Symposium, Liege, Belgium, 1977.

  17. 17.

    Palmer, J.R., Levels of Data Base Description, Inf. Processing, 1974, vol. 74.

  18. 18.

    Nijssen, G.M., Gross Architecture for the Next Generation of Database Management Systems, Proc. of the IFIP Working Conf. on Modelling in Data Base Management Systems, Nijssen, G.M., Ed., North-Holland, 1976.

  19. 19.

    Proc. of the ACM SIGMOD Workshop on Data Abstraction, Databases, and Conceptual Modeling, Pingree Park, Colorado, 1980, SGMOD Record, 1980, vol. 11, no. 2.

    Google Scholar 

  20. 20.

    Proc. of the Joint SIGMOD/SIGPLAN Conf. on Data Abstraction, Definition, and Structure, Salt Lake City, Utah, 1976.

  21. 21.

    Tyugu, E.Kh., Kontseptual’noe programmirovanie (Conceptual Programming), Moscow: Nauka, 1984.

    Google Scholar 

  22. 22.

    Zamulin, A.V., Sistemy programmirovaniya baz dannykh i znanii (Programming Systems for Databases and Knowledge Bases), Novosibirsk: Nauka, 1990.

    Google Scholar 

  23. 23.

    Kogalovsky, M.R., XML Technologies and XML Data, Proc. of the Int. Conf. on Databases and Information Technologies of the XXI Century, Moscow, 2003, Moscow: Ross. Gos. Gumanitarnyi Univ., 2004.

  24. 24.

    Mylopoulos, J., Conceptual Modelling and Telos, Conceptual Modelling, Databases, and CASE: An Integrated View of Information Systems Development, Loucopoulos, P. and Zicari, R., Eds. Wiley, 1992;

  25. 25.

    Proc. of the 23rd Int. Conf. on Conceptual Modeling, Shanghai, China, 2004.

  26. 26.

    Smith, J.M. and Smith, D.C.P., Principles of Database Conceptual Design, Lect. Notes Comput. Sci., 1982, vol. 132.

  27. 27.

    Smith, J.M. and Smith, D.C.P., Database Abstraction: Aggregation, Comm. ACM, 1977, vol. 20, no. 6.

  28. 28.

    Smith, J.M. and Smith, D.C.P., Database Abstraction: Aggregation and Generalization, ACM TODS, 1977, vol. 2, no. 2.

  29. 29.

    Gruber, T.B., Toward Principles for the Design of Ontologies Used for Knowledge Sharing, Formal Ontology in Conceptual Analysis and Knowledge Representation, Proc. of Int. Workshop on Ontology, Padova, Italy, Kluwer, 1993.

  30. 30.

    Olive, A., On the Role of Conceptual Schemas in Information Systems Development. Reliable Software Technologies, Lect. Notes Comput. Sci., 2004, vol. 3063.

  31. 31.

    Chen, P.P., The Entity-Relationship Model. Toward a Unified View of Data, ACM TODS, 1976, vol. 1, no. 1.

  32. 32.

    Falkenberg, E., Concepts of Modelling Information, Proc. of the IFIP Working Conf. on Modelling in Data Base Management Systems, Nijssen, G.M., Ed., North-Holland, 1976.

  33. 33.

    Halpin, T., Object-Role Modeling (ORM/NIAM), Handbook on Architectures of Information Systems, Bernus, P., Mertins, K, and Schmidt, G., Eds., Springer, 1998;

  34. 34.

    Nijssen, G.M. and Halpin, T., Conceptual Schema and Relational Database Design, Prentice Hall, 1989.

  35. 35.

    Abrial, J.R., Data Semantics, Database Management, Klimble, J. and Koffeman, K., Eds., North-Holland, 1974.

  36. 36.

    Bracchi, G., Paolini, P., and Pelagetti, G., Binary Logical Associations in Data Modelling, Proc. of the IFIP Working Conf. on Modelling in Data Base Management Systems, Nijssen, G.M., Ed., North-Holland, 1976.

  37. 37.

    Codd, E.F., Extending the Database Relational Model to Capture More Meaning, ACM TODS, 1979, no. 4.

  38. 38.

    Shipman, D.W., The Functional Data Model and Data Language DAPLEX, ACM SIGMOD Conference, 1979.

  39. 39.

    Schmid, H.A. and Swenson, J.R., On the Semantics of the Relational Data Model, ACM SIGMOD Conference, 1975.

  40. 40.

    Hammer, M. and McLeod, D., Database Description with SDM: A Semantic Database Model, ACM TODS, 1981, vol. 6, no. 3.

  41. 41.

    Bubenko, J.A., Jr., IAM: An Inferential Abstract Modeling Approach to Design of Conceptual Schema, Proc. of the ACM SIGMOD Int. Conf., Toronto, 1977.

  42. 42.

    Bubenko, J., Data Models and Their Semantics, Data Design Infotech State of the Report Series, 1980, vol. 8, no. 4.

  43. 43.

    Bachman, C.W. and Daya, M., The Role Concept in Data Models, Proc. of the Third Conf. on Very Large Data Bases, ACM, 1977.

  44. 44.

    Concepts and Terminology for the Conceptual Schema and the Information Base, van Griethauzen, J.J., Ed., ISO TC97/SC5/WG3, 1982, Publ. 695.

  45. 45.

    Tsalenko, M.Sh., Modelirovanie semantiki v bazakh dannykh (Modeling Semantics in Databases), Moscow: Nauka, 1989.

    MATH  Google Scholar 

  46. 46.

    Minker, J., Logic and Databases: A 20 Year Retrospective, Proc. of the Int. Workshop on Logic in Databases, Lect. Notes Comput. Sci., 1996, vol. 1154;

  47. 47.

    Ramamohanarao, K. and Harland, J., An Introduction to Deductive Database Languages and Systems, VLDB J., 1994, vol. 3, pp. 107–122.

    Article  Google Scholar 

  48. 48.

    Ramakrishnan, R. and Ullman, J.D., A Survey of Research on Deductive Database Systems, J. Logic. Programming, 1995, vol. 23, no. 2, pp. 125–149; =1995-14.pdf.

    Article  MathSciNet  Google Scholar 

  49. 49.

    Ullman, J.D., Principles of Database and Knowledge-Base Systems, Vol. 2, Computer Science, 1988.

  50. 50.

    Gallaire, H., Minker, J. and Nicolas, J.-M., Logic and Databases: A Deductive Approach, ACM Comput. Surveys, 1984, vol. 16, no. 2, pp. 153–185.

    MATH  Article  MathSciNet  Google Scholar 

  51. 51.

    Minker, J., perspectives and Deductive Databases, J. Logic Proramming, 1988, vol. 5, pp. 33–60.

    Article  Google Scholar 

  52. 52.

    Ceri, S., Gottlob, G., and Tanca, L., Logic Programming and Databases (Surveys in Computer Science), Berlin: Springer, 1990. Translated under the title Logicheskoe programmirovanie i bazy dannykh, Moscow: Mir, 1992.

    Google Scholar 

  53. 53.

    Kiefer. M. and Lausen, G., F-Logic: A Higher-Order Language for Reasoning about Objects, Inheritance, and Schema, SIGMOD Record, 1989, vol. 18, no. 2.

  54. 54.

    Mylopoulos, J., Borgida, A., Greenspan, S., and Wong, H.K.T., Information System Design at the Conceptual Level—the TAXIS Project, IEEE Database Eng. Bull., 1984, vol. 7, no. 4.

  55. 55.

    Kalinichenko, L.A., SYNTHESIS: The Language for Description, Design, and Programming of the Heterogeneous Interoperable Information Resource Environment, Institute for Problems of Informatics, Moscow: Russian Academy of Sciences, 1993.

    Google Scholar 

  56. 56.

    Kalinichenko, L.A., Stupnikov, S.A., and Martynov, D.O., SYNTHESIS: The Language for Canonical Information Modeling and Mediator Definition for Problem Solving in Heterogeneous Information Resource Environments, Moscow: Russian Academy of Sciences, 2007.

    Google Scholar 

  57. 57.

    Kalinichenko, L.A., Briukhov, D.O., Martynov, D.O., Skvortsov, N.A., and Stupnikov, S.A., Mediation Framework for Enterprise Information System Infrastructure: Application-driven Approach, Proc. of the 9th Int. Conf. on Enterprise Information Systems (ICEIS 2007), 2007.

  58. 58.

    Kalinichenko, L.A., Briukhov, D.O., Zakharov, V.N., Podkolodnaya, O.A., and Podkolodnyi, N.L., Problems of the Creation of a Subject Mediator for Regulating Gene Expression, Trudy IV Vserossiiskoi nauchnoi konferentsii “Electronnye biblioteki: perspectivnye metody i tekhnologii, elektronnye kollektsii” (Proc. of the All-Russia Conf. on Digital Libraries, Next Generation Methods and Technologies, and Digital Collections), Dubna, Joint Institute for Nuclear Research, 2002, Vol. 2.

    Google Scholar 

  59. 59.

    Langefors, B., Infological Model and Information User Views, Inf. Syst., 1980, no. 5.

  60. 60.

    Langefors, B., Information Systems, Proc. of the IFIP Congress on Information Processing, 1974, Amsterdam: North-Holland, 1974.

    Google Scholar 

  61. 61.

    Sundgren, B., An Infological Approach to Data Bases, Urval no. 7 Stockholm: National Bureau of Statistics, 1973.

  62. 62.

    Sundgren, B., Database Design in Theory and Practice: Toward an Integrated Methodology, Proc. of VLDB, 1978.

  63. 63.

    Vetoshkin, V.M. and Guzenko, V.G., Methodology, Technology, and the Family of Tools SYNTHESIS+ for Database Design, Trudy rabochego seminara Moskovskoi sektsii ACM SIGMOD perspektivy hfzvitiya system baz dannykh i informatsionnykh system (Proc. of the Workshop of the Moscow Chapter of ACM SIGMOD “Advances in Databases and Information Systems (ADBIS’93)”), Moscow: Institut Problem Informatsii, Ross. Akad. Nauk, 1993.

    Google Scholar 

  64. 64.

    Tsichritzis, D.C. and Lochovsky, F.H., Data Models, Englewood-Cliffs, N.J.: Prentice-Hall, 1982. Translated under the title Modeli dannykh, Moscow, Finansy i statistika, 1985.

    Google Scholar 

  65. 65.

    Kogalovsky, M.R., Perspektivnye SUBD I infologicheskii podkhod (Next Generation DBMSs and Infological Approach), Moscow: Tsentral’nyi Ekonomiko-matematicheskii Institut, 1980.

    Google Scholar 

  66. 66.

    Savinkov, V.M., Veinerov, O.M., Kazarov, M.S., Zhadan, N.V., and Blum, V.M., Basic Concepts of Database Design Automation, Prikl. Informatika (Applied Information Science), Moscow: Finansy i statistika, 1982, Vyp. 1.

    Google Scholar 

  67. 67.

    Savinkov, V.M., Veinerov, O.M., Kazarov, M.S., Zhadan, N.V., and Blum, V.M., Basic Principles of the Experimental Version of the Computer Aided Database Design System OMEGA-1, Tezisy dokladov Vtoroi Vsesoyuznoi konferentsii “Banki dannykh“, Sektsiya 3 “Metody I sistemy proektirovaniya baz dannykh” (Abstracts of the Second All-Union Conf. on Data-bases, Section 3, Methods and Systems for Database Design), Tashkent, 1983.

  68. 68.

    Mikhnovskii, S.D., Technology of the Conceptual Design of Integrated Databases, Tezisy dokladov IV Vsesoyuznoi konferentsii “Sistemy baz dannykh i znanii“, Sektsiya 3 “Primenenie SUBD I SUBZ” (Abstracts of the IV All-Union Conf. on Data and Knowledge Bases, Section 3, Application of DBMSs and Knowledge Bases Management Systems), Kalinin, Russia, 1989.

  69. 69.

    Fursin, G.I., Teoriya i praktika sozdaniya bankov dannykh (Theory and Practice of Databanks developing), Kiev: Vishcha shkola, 1987.

    Google Scholar 

  70. 70.

    Embley, D.W., Liddle, S.W., and Al-Kamga, L., Enterprise Modeling with Conceptual XML, Proc. of ER 2004, Atzeni, P. et al., Eds., Lect. Notes in Comput. Sci., 2004, vol. 3288.

  71. 71.

    Architecture and Models in Data Base Management Systems, Proc. of the IFIP TC-2 Working Conf. on Modeling in DBMS, Nice, France, 1977, Nijssen, G.M., Ed.

  72. 72.

    Olle, T.W., The Conceptual Schema Controversy, Proc. of the ACM SIGMOD Int. Conf. on Management of Data, Austin, Texas, 1978.

  73. 73.

    Steel, T., Jr., Data Base Standardization: A Status Report, Data Base Description, Douque, B.C.M. and Nijssen, G.M., Eds., Amsterdam: North-Holland, 1975.

    Google Scholar 

  74. 74.

    Kent, W., New Criteria for the Conceptual Model, Proc. of the 2nd Int. Conf. on VLDB, Lockermann, P.C. and Neuhold, E.J., Eds., North-Holland, 1976.

  75. 75.

    Kent, W., Splitting the Conceptual Schema, Proc. of the VLDB, 1980.

  76. 76.

    Shtainer, Yu., Conceptual Models of Databases, in Matematicheskie i realizatsionnye problemy SUBD (Mathematical and Implementation-Related DBMS Problems), Moscow: Tsentral’nyi Ekonomiko-matematicheskii Institut, 1980.

    Google Scholar 

  77. 77.

    Haya El-Ghalayini, Odeh, M., McClatchey, R., and Solomonides, T., Reverse Engineering Ontology to Conceptual Data Models, Databases and Applications, 2005.

  78. 78.

    Jarrar, M., Demey, J., and Meersman, R., On Using Conceptual Data Modeling for Ontology Engineering, Lect Notes Comput. Sci., 2003, vol. 2800.

  79. 79.

    Fonseca, F. and Martin, J., Learning the Differences between Ontologies and Conceptual Schemas through Ontology-Driven Information Systems, J. Association Inform. Syst., 2007, vol. 8, no. 2;

  80. 80.

    Hay, D.C., Data Modeling, RDF&OWL—Part One: An Introduction to Ontologies,

  81. 81.

    Kalinichenko, L., Missikiff, M., Schiapelli, F., and Skvortsov, N., Ontological Modeling, Proc. of the 5th Russian Conf. on Digital Libraries RCDL’2003, St. Petersburg, Russia, 2003.

  82. 82.

    Orbst, L., Ontologies & Databases: Similarities & Differencies, Ontolog Panel. MITRE. Information Semantics, Center for Innovative Computing& Informatics, 2006.

  83. 83.

    Spyns, P., Meersman, R., and Jarrar, M., Data Modelling versus Ontology Engineering, SIGMOD Record, 2002, vol. 31,issue 4.

  84. 84.

    Kogalovsky, M.R., Concepts and Terminology of Modeling in the Theory of Database Systems, in Teoriya i prilozheniya baz dannykh (Theory and Applications of Databases), Mocow: Tsentral’nyi Ekonomikomatematicheskii Institut, 1984.

    Google Scholar 

  85. 85.

    Kogalovsky, M.R., Terminology Issues in the Theory of Databases, Uor. Sist. Mash., 1986, no. 6.

  86. 86.

    Kogalovsky, M.R., Abstractions and Data Models in Database Systems, SUBD, 1998, no. 4–5.

  87. 87.

    Kogalovsky, M.R., Some Terminological Problems of Data Base Systems, Proc. of te Sixth Int. Seminar on Database Management Systems, Matrafured, Hungary, 1983, Budapest: SZAMALK, 1983.

  88. 88.

    Conceptual Schema,

  89. 89.

    Smith, J.M. Comments on the Paper “Data Base Design in Theory and Practice“ by Bo Sundgren, Proc. of VLDB, 1978.

  90. 90.

    Mylopoulos, J., Borgida, A., Jarke, M., and Kourbarakis, M., Telos: Representing Knowledge about Information Systems, ACM Trans. Inf. Syst., 1990, vol. 8, no. 4, pp. 325–362.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. R. Kogalovsky.

Additional information

Original Russian Text © M.R. Kogalovsky, L.A. Kalinichenko, 2009, published in Programmirovanie, 2009, Vol. 35, No. 5.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kogalovsky, M.R., Kalinichenko, L.A. Conceptual and ontological modeling in information systems. Program Comput Soft 35, 241–256 (2009).

Download citation


  • Conceptual Schema
  • Object Constraint Language
  • Subject Domain
  • Ontological Modeling
  • Database Design