Skip to main content
Log in

Ejector and bipolar outflow of the radio galaxy M87

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The superfine structure of the jet formation region in the radio galaxy M87 has been investigated. An accretion disk and high- and low-velocity jet and counterjet components have been identified. The high-velocity bipolar outflow is ejected from the central disk region, a nozzle 4 mpc in diameter, while the low-velocity one is ejected from a ring 60 mpc in diameter and 14 mpc in width. The low-velocity plasma flow is a hollow tube with a built-in helix. The observed helical structure of the high-velocity jet is determined by precession. The components of the structure, its disk and bipolar outflow, suggest solid-body rotation. Ring currents and aligned magnetic fields are generated in them under the action of an external magnetic field. The bipolar outflows are ejected coaxially but in opposite directions—along and opposite to the disk field. As a result, the jet flow accelerates, while the counterjet one decelerates. This causes the extent of the region of radiative cooling of the ejected relativistic electrons in the counterjet to decrease and maintains their “afterglow” at large distances in the jet. The high collimation of the rotating flows is determined by their interaction with the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Abramyan, Astrofizika 52, 135 (2009).

    Google Scholar 

  2. H. Arp, Astrophys. J. Lett. 1, 1 (1967).

    Google Scholar 

  3. J. A. Biretta, F. Zhou, and F. N. Jwen, Astrophys. J. 447, 582 (1995).

    Article  ADS  Google Scholar 

  4. P. E. Hardee, AIP Conf. Proc. 856, 57 (2006).

    Article  ADS  Google Scholar 

  5. R. J. Harms, F. C. Ford, Z. I. Tsvetanov, et al., Astrophys. J. 435, L35 (1994).

    Article  ADS  Google Scholar 

  6. R. N. Henriksen, Astrophys. J. 314, 33 (1987).

    Article  ADS  Google Scholar 

  7. K. I. Kellermann, M. L. Lister, D. C. Homan, et al., Astrophys. J. 609, 538 (2004).

    Article  ADS  Google Scholar 

  8. M. Livio, Phys. Rep. 311, 225 (1999).

    Article  ADS  Google Scholar 

  9. R. V. E. Lovelace, H. L. Berk, and J. Contopoulos, Astrophys. J. 379, 696 (1991).

    Article  ADS  Google Scholar 

  10. R. V. E. Lovelace, M. M. Romanova, and W. I. Newman, Astrophys. J. 437, 136 (1994).

    Article  ADS  Google Scholar 

  11. C. Ly, R. C. Walker, and W. Junor, Astrophys. J. 660, 200 (2007).

    Article  ADS  Google Scholar 

  12. H. L. Marshall, B. P. Miller, D. S. Davis, et al., Astrophys. J. 564, 683 (2002).

    Article  ADS  Google Scholar 

  13. L. I. Matveyenko and S. V. Seleznev, Pis’ma Astron. Zh. 37, 176 (2011) [Astron. Lett. 37, 154 (2011)].

    Google Scholar 

  14. L. I. Matveyenko, S. S. Sivakon, S. G. Jorstad, and A. P. Marscher, Pis’ma Astron. Zh. 36, 163 (2010a) [Astron. Lett. 36, 151 (2010a)].

    Google Scholar 

  15. L. I. Matveyenko, S. S. Sivakon, S. V. Seleznev, et al., in Proceedings of the 10th European VLBI Network Symposium and EVN Users Meeting: VLBI and the New Generation of Radio Arrays, Manchester, UK, Sept. 20–24, 2010 (2010b).

  16. K. I. Nishikawa, G. Richardson, S. Koide, et al., Astrophys. J. 625, 60 (2005).

    Article  ADS  Google Scholar 

  17. F. N. Owen, J. A. Eilek, and N. E. Kassim, Astrophys. J. 543, 611 (2000).

    Article  ADS  Google Scholar 

  18. F. N. Owen, P. E. Hardee, and R. Bignell, Astrophys. J. 239, L11 (1980).

    Article  ADS  Google Scholar 

  19. E. S. Perlman, J. A. Biretta, F. Zhou, et al., Astrophys. J. 117, 2185 (1999).

    Google Scholar 

  20. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, and R. V. E. Lovelace, Mon. Not. R. Astron. Soc. 399, 1802 (2009).

    Article  ADS  Google Scholar 

  21. W. B. Sparks, J. A. Biretta, and F. Macchetto, Astrophys. J. 473, 254 (1996).

    Article  ADS  Google Scholar 

  22. B. C. Whitmore, W. B. Sparks, R. A. Lucas, et al., Astrophys. J. Lett. 454, L73 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Matveyenko.

Additional information

Original Russian Text © L.I. Matveyenko, S.V. Seleznev, 2011, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2011, Vol. 37, No. 8, pp. 563–574.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matveyenko, L.I., Seleznev, S.V. Ejector and bipolar outflow of the radio galaxy M87. Astron. Lett. 37, 515–525 (2011). https://doi.org/10.1134/S0320010811080043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0320010811080043

Keywords

Navigation