Skip to main content
Log in

Galactic kinematics from OB3 stars with distances determined from interstellar Ca II lines

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Based on data for 102 OB3 stars with known proper motions and radial velocities, we have tested the distances derived by Megier et al. from interstellar Ca II spectral lines. The internal reconciliation of the distance scales using the first derivative of the angular velocity of Galactic rotation Ω′0 and the external reconciliation with Humphreys’s distance scale for OB associations refined by Mel’nik and Dambis show that the initial distances should be reduced by ≈20%. Given this correction, the heliocentric distances of these stars lie within the range 0.6–2.6 kpc. A kinematic analysis of these stars at a fixed Galactocentric distance of the Sun, R 0 = 8 kpc, has allowed the following parameters to be determined: (1) the solar peculiar velocity components (u , v , ω ) = (8.9, 10.3, 6.8) ± (0.6, 1.0, 0.4) km s−1; (2) the Galactic rotation parameters Ω0 = −31.5 ± 0.9 km s−1 kpc−1, Ω′0 = +4.49 ± 0.12 km s−1 kpc−2, Ω″0 = −1.05 ± 0.38 km s−1 kpc−3 (the corresponding Oort constants are A = 17.9 ± 0.5 km s−1 kpc−1, B = −13.6 ± 1.0 km s−1 kpc−1 and the circular rotation velocity of the solar neighborhood is |V 0| = 252 ± 14 km s−1); (3) the spiral density wave parameters, namely: the perturbation amplitudes for the radial and azimuthal velocity components, respectively, f R = −12.5±1.1 km s−1 and f ϑ = 2.0 ± 1.6 km s−1; the pitch angle for the two-armed spiral pattern i = −5.3° ± 0.3°, with the wavelength of the spiral density wave at the solar distance being λ = 2.3 ± 0.2 kpc; the Sun’s phase in the spiral wave x = −91° ± 4°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Avedisova, Astron. Rep. 82, 488 (2005).

    Google Scholar 

  2. V. V. Bobylev and A. T. Bajkova, Mon. Not. R. Astron. Soc. 408, 1788 (2010).

    Article  ADS  Google Scholar 

  3. V. V. Bobylev, A. T. Bajkova, and S. V. Lebedeva, Pis’ma Astron. Zh. 33, 809 (2007) [Astron. Lett. 33, 720 (2007)].

    Google Scholar 

  4. V. V. Bobylev, A. T. Bajkova, and A. S. Stepanishchev, Pis’ma Astron. Zh. 34, 570 (2008) [Astron. Lett. 34, 515 (2008)].

    Google Scholar 

  5. W. B. Burton, Astron. Astrophys. 10, 76 (1971).

    ADS  Google Scholar 

  6. D. P. Clemens, Astrophys. J. 295, 422 (1985).

    Article  ADS  Google Scholar 

  7. Z. Cvetković, I. Vince, and S. Ninković, New Astron. 15, 302 (2010).

    Article  ADS  Google Scholar 

  8. A. K. Dambis, A. M. Mel’nik, and A. S. Rastorguev, Pis’ma Astron. Zh. 27, 68 (2001) [Astron. Lett. 27, 58 (2001)].

    Google Scholar 

  9. W. Dehnen and J. J. Binney, Mon. Not. R. Astron. Soc. 298, 387 (1998).

    Article  ADS  Google Scholar 

  10. D. Fernández, F. Figueras, and J. Torra, Astron. Astrophys. 372, 833 (2001).

    Article  ADS  Google Scholar 

  11. M. Fich, L. Blitz, and A. A. Stark, Astrophys. J. 342, 272 (1989).

    Article  ADS  Google Scholar 

  12. T. Foster and B. Cooper, astro-ph:1009.3220 (2010).

  13. C. Francis and E. Anderson, New Astron. 14, 615 (2009).

    Article  ADS  Google Scholar 

  14. A. M. Ghez, S. Salim, N. N. Weinberg, et al., Astrophys. J. 689, 1044 (2008).

    Article  ADS  Google Scholar 

  15. S. Gillessen, F. Eisenhauer, S. Trippe, et al., Astrophys. J. 692, 1075 (2009).

    Article  ADS  Google Scholar 

  16. J. Holmberg, B. Nordström, and J. Andersen, Astron. Astrophys. 475, 519 (2007).

    Article  ADS  Google Scholar 

  17. R. M. Humphreys, Astrophys. J. Suppl. 38, 309 (1978).

    Article  ADS  Google Scholar 

  18. N. V. Kharchenko, R.-D. Scholz, A. E. Piskunov, et al., Astron. Nachr. 328, 889 (2007).

    Article  ADS  Google Scholar 

  19. V. V. Koval’, V. A. Marsakov, and T. B. Borkova, Astron. Rep. 53, 1117 (2009).

    Article  ADS  Google Scholar 

  20. F. van Leeuwen, Astron. Astrophys. 474, 653 (2007).

    Article  ADS  Google Scholar 

  21. C. C. Lin, C. Yuan, and F. H. Shu, Astrophys. J. 155, 721 (1969).

    Article  ADS  Google Scholar 

  22. L. Mahy, G. Rauw, F. Martins, et al., Astrophys. J. 708, 1537 (2010).

    Article  ADS  Google Scholar 

  23. J. Maiz-Apellániz, E. J. Alfaro, and A. Sota, astroph: 0804.2553 (2008).

  24. P. J. McMillan and J. J. Binney, Mon. Not. R. Astron. Soc. 402, 934 (2010).

    Article  ADS  Google Scholar 

  25. A. Megier, A. Strobel, A. Bondar, et al., Astrophys. J. 634, 451 (2005).

    Article  ADS  Google Scholar 

  26. A. Megier, A. Strobel, G. A. Galazutdinov, et al., Astron. Astrophys. 507, 833 (2009).

    Article  ADS  Google Scholar 

  27. A. M. Mel’nik and A. K. Dambis, Mon. Not. R. Astron. Soc. 400, 518 (2009).

    Article  ADS  Google Scholar 

  28. A. M. Mel’nik, A. K. Dambis, and A. S. Rastorguev, Pis’ma Astron. Zh. 27, 611 (2001) [Astron. Lett. 27, 521 (2001)].

    Google Scholar 

  29. Yu. N. Mishurov and I. A. Zenina, Astron. Astrophys. 341, 81 (1999).

    ADS  Google Scholar 

  30. I. I. Nikiforov, ASP Conf. Ser. 316, 199 (2003).

    ADS  Google Scholar 

  31. K. F. Ogorodnikov, Dynamics of Stellar Systems (Fizmatgiz, Moscow, 1965) [in Russian].

    MATH  Google Scholar 

  32. D. Pourbaix, A. A. Tokovinin, A. H. Batten, et al., Astron. Astrophys. 424, 727 (2004).

    Article  ADS  Google Scholar 

  33. A. S. Rastorguev, E. V. Glushkova, A. K. Dambis, and M. V. Zabolotskikh, Pis’ma Astron. Zh. 25, 689 (1999) [Astron. Lett. 25, 595 (1999)].

    Google Scholar 

  34. M. J. Reid, Ann. Rev. Astron. Astrophys. 31, 345 (1993).

    Article  ADS  Google Scholar 

  35. M. J. Reid, K.M. Menten, X.W. Zheng, et al., Astrophys. J. 700, 137 (2009).

    Article  ADS  Google Scholar 

  36. K. Rohlfs, Lectures on Density Wave Theory (Springer, Berlin, 1977).

    Google Scholar 

  37. R. Schönrich, J. Binney, and W. Dehnen, Mon. Not. R. Astron. Soc. 403, 1829 (2010).

    Article  ADS  Google Scholar 

  38. A. S. Stepanishchev and V. V. Bobylev, Pis’ma Astron. Zh. 37, 281 (2011) [Astron. Lett. 37, 254 (2011)].

    Google Scholar 

  39. W. J. Tango, J. Davis, A. P. Jacob, et al., Mon. Not. R. Astron. Soc. 396, 842 (2009).

    Article  ADS  Google Scholar 

  40. N. Tetzlaff, R. Neuhäuser, and M. M. Hohle, Mon. Not. R. Astron. Soc. 410, 190 (2011).

    Article  ADS  Google Scholar 

  41. The HIPPARCOS and Tycho Catalogues, ESA SP-1200 (1997).

  42. B. Y. Welsh, R. Lallement, J.-L. Vergely, et al., Astron. Astrophys. 510, A54 (2010).

    Article  ADS  Google Scholar 

  43. M. V. Zabolotskikh, A. S. Rastorguev, and A. K. Dambis, Pis’ma Astron. Zh. 28, 516 (2002) [Astron. Lett. 28, 454 (2002)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Bobylev.

Additional information

Original Russian Text © V.V. Bobylev, A.T. Bajkova, 2011, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2011, Vol. 37, No. 8, pp. 575–585.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobylev, V.V., Bajkova, A.T. Galactic kinematics from OB3 stars with distances determined from interstellar Ca II lines. Astron. Lett. 37, 526–535 (2011). https://doi.org/10.1134/S0320010811080018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0320010811080018

Keywords

Navigation