Skip to main content
Log in

A Preliminary Study on Earth and Other Planets Shape Determination: Comparison of Classical and Relativistic Gravitational Effects

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

A first introduction is presented to the comparison between classical and relativistic gravitational effects related to planetary shape characterization. The Earth and the giant planets are the examples considered. The analysis is mainly devoted to relativistic and classical predictions of periastron shifts for equatorial or almost equatorial orbits around the Earth and the giant planets, which can be used as tools for determinations of the shape and density distribution. The ratios between relativistic (up to the Lense–Thirring order correction) and classical (resulting from the harmonic expansion) effects and their dependence on the orbit parameters are analyzed in order to identify the conditions improving the possibility to resolve mixed effects. In a complementary approach, predictions for freely falling test particles from relativistic corrections and classical harmonic expansions of the Earth and other planets are compared within the same shape characterization framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Notes

  1. Recall that \(P_{2}(\cos(\pi/2))=-1/2\), \(P_{3}(\cos(\pi/2))=0\), and \(P_{4}(\cos(\pi/2))=3/8\).

  2. This mean density should result from a local density invariant under translations in the directions \(x\) and \(y\).

  3. In this case we assume that the actual density leading to the mean value \(\rho\) only depends on the distance from the center of the planet.

  4. We adopt the signature \((+---)\).

  5. There is also a precession of the orbital plane which we shall not discuss here; see below.

  6. A fluid planet could have a differential rotation rate, with a radial dependence.

  7. For example, on Earth we would have \(v^{2}/c^{2}\sim 10^{-11}\) and \(Gm^{\prime}/(c^{2}R)\sim 10^{-9}\).

References

  1. R. Helled and T. Guillot, Internal Structure of Giant and Icy Planets: Importance of Heavy Elements and Mixing. Handbook of Exoplanets (Springer, Berlin, 2018).

    Google Scholar 

  2. T. Guillot and D. Gautier, in Treatise of Geophysics, Vol. 10, Planets and Moons. Ed. T. Spohn and J. Schubert (Elsevier, Amsterdam, 2007).

  3. W. Lowrie, Fundamentals of Geophysics (Cambridge University Press, New York, 2007).

    Book  Google Scholar 

  4. B. Bertotti, P. Farinella, and D. Vokrouhlicky, Physics of the Solar System: Dynamics and Evolution, Space Physics, and Spacetime Structure (Springer, Berlin, 2012).

    Google Scholar 

  5. Y. Kaspi, Geophys. Res. Lett. 40, 676 (2013).

    Article  ADS  Google Scholar 

  6. V. Zharkov and V. P. Trubitsyn, Icarus 21, 152 (1974).

    Article  ADS  Google Scholar 

  7. L. Iorio, Universe 1, 38 (2015).

    Article  ADS  Google Scholar 

  8. L. Iorio, H. I. M. Lichtenegger, M. L. Ruggiero, and C. Corda, Astrophys. Space Sci. 31, 351 (2011).

    Article  ADS  Google Scholar 

  9. L. Iess et al, Nature Lett. 555, 220 (2018).

    Article  ADS  Google Scholar 

  10. D. Serra et al., Mon. Not. Royal Astron. Soc. 490, 766 (2019).

    Article  ADS  Google Scholar 

  11. R. A. Jacobson, Astron. J. 137, 4322 (2009).

    Article  ADS  Google Scholar 

  12. R. A. Jacobson, Astrophys. J. 148, 76 (2014).

    Google Scholar 

  13. J. L. Elliot and P. D. Nicholson, Planetary Rings (A85-34401 15-88) (University of Arizona Press, Tucson, 1984).

    Google Scholar 

  14. R. Helled, N. Nettelmann, and T. Guillot, Space Sci. Rev. 216, 38 (2020).

    Article  ADS  Google Scholar 

  15. L. Iorio, Universe 9, 211 (2023).

    Article  ADS  Google Scholar 

  16. G. Renzetti, Can. J. Phys. 90, 883 (2012).

    Article  ADS  Google Scholar 

  17. G. Renzetti, Cent. Eur. J. Phys. 11, 531 (2013).

    Google Scholar 

  18. G. Renzetti, New Astron. 23, 63 (2013).

    Article  ADS  Google Scholar 

  19. G. Renzetti, New Astron. 29, 25 (2014).

    Article  ADS  Google Scholar 

  20. G. Renzetti, Acta Astronaut. 113, 164 (2015).

    Article  ADS  Google Scholar 

  21. L. Iorio, I. Ciufolini, and E. C. Pavlis, Class. Quantum Grav. 19, 4301 (2002).

    Article  ADS  Google Scholar 

  22. C. Lämmerzahl, I. Ciufolini, H. Dittus, L. Iorio, H. Müller, A. Peters, E. Samain, S. Scheithauer, and S. Schiller, Gen. Rel. Grav. 36, 2373 (2004).

    Article  ADS  Google Scholar 

  23. L. Iorio, Int. J. Mod. Phys. D 23, 1450028 (2014).

  24. L. Iorio, Eur. Phys. J. C 79, 64 (2019).

    Article  ADS  Google Scholar 

  25. L. Iorio, New Astron. 15, 554 (2010).

    Article  ADS  Google Scholar 

  26. L. Iorio, Mon. Not. Royal Astron. Soc. 484, 4811 (2019).

    Article  ADS  Google Scholar 

  27. L. Iorio, A. P. Girija, and D. Durante, Mon. Not. Royal Astron. Soc. 523, 3595 (2023).

    Article  ADS  Google Scholar 

  28. S. M. Kopeikin, E. M. Mazurova, and A. P. Karpik, Phys. Lett. A 379, 1555 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  29. S. M. Kopeikin, W. Han, and E. Mazurova, Phys. Rev D 93, 044069 (2016).

  30. S. M. Kopeikin, Manuscripta Geodaetica 16, 301 (1991).

    ADS  Google Scholar 

  31. G. Petit, P.Wolf, and P. Delva, in Frontiers in Relativistic Celestial Mechanics, Vol. 2, Applications and Experiments, Ed. M. Kopeikin (W. de Gruyter, Berlin, 2014).

  32. S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, et al., New J. Phys. 16, 073023 (2014).

  33. T. L. Nicholson et al., Nat. Commun. 6, 1–8 (2015).

    Google Scholar 

  34. Cheng-Gang Qin et al., Class. Quantum Grav. 36, 055008 (2019).

  35. Y. F. Pigorov, arXiv: 1306.4866.

  36. L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon Press, Oxford, 1975).

    Google Scholar 

  37. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1975).

    Google Scholar 

  38. V. S. Netchitailo, JHEP GC 5, 112 (2019).

    Article  Google Scholar 

  39. P. Alken et al., Earth, Planets, Space 73, 49 (2021).

    Article  ADS  Google Scholar 

  40. D. Durante et al., Geophys. Research Lett. 47 (4), 10.1029/2019GL086572 (2020).

  41. L. Iess et al., Science 10.1126/science.aat2965 (2019).

  42. M. Brozovič and R. Jacobson, Astron. J. 163, 241 (2022).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio M. Simeone.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazzito, S.Y., Simeone, C.M. A Preliminary Study on Earth and Other Planets Shape Determination: Comparison of Classical and Relativistic Gravitational Effects. Gravit. Cosmol. 30, 172–188 (2024). https://doi.org/10.1134/S0202289324700075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289324700075

Navigation