Skip to main content
Log in

Formation of Supermassive Nuclei of Black Holes in the Early Universe by the Mechanism of Scalar-Gravitational Instability. III. Large-Scale Picture

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We study the dependence of the parameters of the evolution of scalarly charged black holes (BHs) in the early Universe on the parameters of field theories of interaction, and the influence of the geometric structure of the relative position of BHs on the limitation of their maximum mass, The problem of the metric of a scalarly charged BH in a medium of expanding scalarly charged matter is discussed, the expression is obtained for the macroscopic cosmological constant at late stages of expansion, generated by quadratic fluctuations of the metric, connecting the cosmological constant value with the BH masses and their concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Notes

  1. We use the Planck system of units \(G=c=\hbar=1\).

  2. These are combinations of the equations \({}^{1}_{1}\), \({}^{4}_{4}\) and the scalar field equation.

References

  1. Yu. G. Ignat’ev, Grav. Cosmol. 29 (4), 327 (2023); arXiv: 2308.03192.

  2. S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, and T. Ott, Astrophys. J. 692, 1075 (2009); arXiv: 0810.4674.

    Article  ADS  Google Scholar 

  3. Sheperd Doeleman, Jonathan Weintroub, Alan E. E. Rogers, et al., Nature 455, 78 (2008); arXiv: 0809.2442.

    Article  ADS  Google Scholar 

  4. Yu. G. Ignat’ev, Grav. Cosmol. 30 (1), 40 (2024); arXiv: 2311.09926.

  5. L. D. Landau and E. M. Lifshitz. The Classical Theory of Fields (Pergamon Press, Oxford, 1971).

    Google Scholar 

  6. I. Z. Fisher, Zh. Eksp. Teor. Fiz. 18, 636 (1948); arXiv: gr-qc/9911008.

    Google Scholar 

  7. K. A. Bronnikov and J. C. Fabris, Phys. Rev. Lett. 96, 251101 (2006); arXiv: gr-qc/0511109.

  8. Kirill A. Bronnikov and Sergey G. Rubin, Lectures on Gravitation and Cosmology (MEPhI, Moscow, 2008) [in Russian].

  9. Kirill A Bronnikov and Sergey G Rubin, Black Holes, Cosmology and Extra Dimensions (World Scientific, Singapore, 2013).

    Google Scholar 

  10. S. Adler and R. B. Pearson, Phys. Rev. D textbf18, 2798 (1978).

  11. Yu. G. Ignat’ev, Grav. Cosmol. 29 (3), 213 (2023); arXiv: 2307.13767.

  12. A. S. Eddington, Mathematical Theory of Relativity (Cambridge Univ. Press, Cambridge, 1923).

    Google Scholar 

  13. O. I. Bogoyavlensky, Methods of the Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics (Nauka, Moscow, 1980).

    Google Scholar 

  14. Yu. G. Ignat’ev, in: Gravitaciya i Teoriya Otnositelnosti, issue 14 (Kazan University Press, Kazan, 1978), p. 90 [in Russian].

  15. Yu. G. Ignat’ev, in: Gravitaciya i Teoriya Otnositelnosti, issue 20 (Kazan University Press, Kazan, 1983), p. 50 [in Russian].

  16. Yu. G. Ignat’ev, Grav. Cosmol. 13, 59 (2007).

    ADS  Google Scholar 

  17. Yu. G. Ignat’ev and A. A. Popov, Sov. Phys. J. 32, 391 (1989).

    Article  Google Scholar 

  18. Yu. G. Ignat’ev and A. A. Popov, Actrophys. Space Sci. 163, 153 (1990).

    Article  ADS  Google Scholar 

  19. Yu. G. Ignat’ev and A. A. Popov, Phys. Lett. A 220, 22 (1996); arXiv: gr-qc/9604028.

    Article  ADS  MathSciNet  Google Scholar 

  20. Yu. G. Ignat’ev and N. Elmakhi, Russ. Phys. J. 51, 74 (2008).

    Article  Google Scholar 

  21. Yu. G. Ignat’ev, Grav. Cosmol. 25, 354 (2019); arXiv: 1908.03488.

Download references

ACKNOWLEDGMENTS

The author is grateful to the participants of the seminar of the Department of Relativity and Gravity at Kazan University for a useful discussion of some aspects of the work. The author is especially grateful to professors S.V. Sushkov and A.B. Balakin.

Funding

The work was carried out using subsidies allocated as part of state support for the Kazan (Volga Region) Federal University in order to increase its competitiveness among the world’s leading scientific and educational centers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Ignat’ev.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignat’ev, Y.G. Formation of Supermassive Nuclei of Black Holes in the Early Universe by the Mechanism of Scalar-Gravitational Instability. III. Large-Scale Picture. Gravit. Cosmol. 30, 141–148 (2024). https://doi.org/10.1134/S0202289324700038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289324700038

Navigation