Skip to main content
Log in

Canonical Formulation of Embedding Gravity in a Form of General Relativity with Dark Matter

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We study embedding gravity, a modified theory of gravity in which our space-time is assumed to be a four-dimensional surface in flat ten-dimensional space. Based on a simple geometric idea, this theory can be reformulated as general relativity with additional degrees of freedom and a contribution to action which can be interpreted as describing dark matter. We study the canonical formalism for such a formulation of embedding gravity. After solving simple constraints, the Hamiltonian is reduced to a linear combination of four first-class constraints with Lagrange multipliers. There still remain six pairs of second-class constraints. Possible ways of taking these constraints into account are discussed. We show that one way of solving the constraints leads to a canonical system going into the previously known canonical formulation of the complete embedding theory with an implicitly defined constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. T. Regge and C. Teitelboim, “General relativity à la string: a progress report,” in Proceedings of the First Marcel Grossmann Meeting, Trieste, Italy, 1975 (Ed. R. Ruffini, North Holland, Amsterdam, 1977), pp. 77–88; arXiv: 1612.05256.

  2. S. Carlip, Rep. Prog. Phys. 64, 885–942 (2001); arXiv: gr-qc/0108040.

    Article  ADS  Google Scholar 

  3. S. Deser, F. A. E. Pirani, and D. C. Robinson, Phys. Rev. D 14 3301–3303 (1976).

    Article  ADS  Google Scholar 

  4. V. Tapia, Class. Quantum Grav. 6, L49 (1989).

    Article  ADS  Google Scholar 

  5. M. D. Maia, Class. Quantum Grav. 6, 173–183 (1989).

    Article  ADS  Google Scholar 

  6. F. B. Estabrook, R. S. Robinson, and H. R. Wahlquist, Class. Quantum Grav. 16, 911–918 (1999).

    Article  ADS  Google Scholar 

  7. D. Karasik and A. Davidson, Phys. Rev. D 67, 064012 (2003); arXiv: gr-qc/0207061.

    Article  ADS  MathSciNet  Google Scholar 

  8. R. Cordero, A. Molgado, and E. Rojas, Phys. Rev. D 79, 024024 (2009); arXiv: 0901.1938.

    Article  ADS  MathSciNet  Google Scholar 

  9. S. A. Paston, Theor. Math. Phys. 169 (2), 1611–1619 (2011); arXiv: 1111.1104.

    Article  MathSciNet  Google Scholar 

  10. L. D. Faddeev, Theor. Math. Phys. 166 (3), 279–290 (2011); arXiv: 0906.4639, 0911.0282, 1003.2311.

  11. S. A. Paston and A. A. Sheykin, Int. J. Mod. Phys. D 21 (5), 1250043 (2012); arXiv: 1106.5212.

    Article  ADS  Google Scholar 

  12. S. A. Paston and V. A. Franke, Theor. Math. Phys. 153 (2), 1582–1596 (2007); arXiv: 0711.0576.

    Article  Google Scholar 

  13. M. Pavsic, Class. Quantum Grav. 2, 869 (1985); arXiv: 1403.6316.

  14. S. A. Paston, Phys. Rev. D 96, 084059 (2017); arXiv: 1708.03944.

  15. S. A. Paston and A. A. Sheykin, Eur. Phys. J. C 78 (12), 989 (2018); arXiv: 1806.10902.

  16. S. A. Paston, Universe 6 (10), 163 (2020); arXiv: 2009.06950.

  17. R. Capovilla, A. Escalante, J. Guven, and E. Rojas, “Hamiltonian dynamics of extended objects: Regge–Teitelboim model,” 2006.

  18. S. A. Paston and A. N. Semenova, Int. J. Theor. Phys. 49 (11), 2648–2658 (2010); arXiv: 1003.0172.

    Article  Google Scholar 

  19. R. Arnowitt, S. Deser, and C. Misner, “The dynamics of general relativity,” in Gravitation: An Introduction to Current Research (Ed. L. Witten, Wiley, NY, 1962), Ch. 7, pp. 227–265.

  20. S. A. Paston, E. N. Semenova, V. A. Franke, and A. A. Sheykin, Gravi. Cosmol. 23, 1–7 (2017); arXiv: 1705.07361.

  21. V. A. Franke and V. Tapia, Nuovo Cim. B 107 (6), 611 (1992).

    Article  ADS  Google Scholar 

  22. P. A. M. Dirac, Lectures on Quantum Mechanics, (ser. Belfer Graduate School of Science, monograph series, Dover Publications, 2001).

Download references

Funding

The work is supported by RFBR grant no. 20-01-00081.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Paston or T. I. Zaitseva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Appendix

Appendix

THE EXPLICIT FORM OF THE \(\Upsilon_{ij}\) CONSTRAINT

The explicit form of the \(\Upsilon_{km}\) constraint is as follows:

$$\Upsilon_{km}=\Upsilon_{km}^{(1)}-\phi^{ij}\Upsilon_{km,ij}^{(2)},$$
(74)

where

$$\Upsilon_{km}^{(1)}=\bigg{(}L_{km,ij}+4\zeta\stackrel{{\scriptstyle\scriptscriptstyle 3}}{{b}}^{a}_{km}\frac{\stackrel{{\scriptstyle\scriptscriptstyle 3}}{{\Pi}}^{c}_{a\perp}+n_{a}n^{c}}{p_{\perp}}\stackrel{{\scriptstyle\scriptscriptstyle 3}}{{b}}_{cij}\bigg{)}$$
$${}\times\beta^{ir}\widetilde{\beta}^{jq}e^{b}_{r}p_{b}N_{q}$$
$${}-2\zeta\frac{\stackrel{{\scriptstyle\scriptscriptstyle 3}}{{b}}^{a}_{km}}{p_{\perp}}\partial_{q}(Nn_{a}p_{b}e^{bq})$$
$${}+\bigg{(}2n_{c}e^{q}_{b}\partial_{k}\partial_{m}y^{b}+2\zeta\frac{p_{a}\stackrel{{\scriptstyle\scriptscriptstyle 3}}{{b}}_{kmc}}{p_{\perp}}e^{aq}\bigg{)}\partial_{q}(Nn^{c})$$
$${}+2n_{a}\partial_{k}\partial_{m}(Nn^{a})+2\zeta\frac{n_{a}\stackrel{{\scriptstyle\scriptscriptstyle 3}}{{b}}^{a}_{km}}{p_{\perp}}p_{b}e^{bq}\partial_{q}N$$
$${}+2\zeta\frac{n_{a}\stackrel{{\scriptstyle\scriptscriptstyle 3}}{{b}}^{a}_{km}}{p_{\perp}}\partial_{q}(Np_{b}e^{bq})$$
$${}+\frac{4\varkappa}{\sqrt{\beta}}N\pi^{lq}\pi^{ij}\bigg{(}\beta_{mj}\overline{L}_{ki,lq}+\beta_{ki}\overline{L}_{mj,lq}$$
$${}-\frac{3}{8}\beta_{km}\overline{L}_{ij,lq}+\frac{1}{2}\beta_{lq}\overline{L}_{km,ij}-\frac{1}{2}\beta_{qj}\overline{L}_{km,li}\bigg{)}$$
$${}-\frac{N\sqrt{\beta}}{2\varkappa}\overline{L}_{km,rs}\stackrel{{\scriptstyle\scriptscriptstyle 3}}{{G}}^{rs}+4\stackrel{{\scriptstyle\scriptscriptstyle 3}}{{D}}_{k}\stackrel{{\scriptstyle\scriptscriptstyle 3}}{{D}}_{m}N$$
(75)

and

$$\Upsilon_{km,ij}^{(2)}=L_{km,ij}-4\zeta\stackrel{{\scriptstyle\scriptscriptstyle 3}}{{b}}^{a}_{km}\frac{\stackrel{{\scriptstyle\scriptscriptstyle 3}}{{\Pi}}^{c}_{a\perp}+n_{a}n^{c}}{p_{\perp}}\stackrel{{\scriptstyle\scriptscriptstyle 3}}{{b}}_{cij}.$$
(76)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paston, S.A., Zaitseva, T.I. Canonical Formulation of Embedding Gravity in a Form of General Relativity with Dark Matter. Gravit. Cosmol. 29, 153–162 (2023). https://doi.org/10.1134/S0202289323020093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289323020093

Navigation