Skip to main content
Log in

Constraining \(\boldsymbol{f(R,T)}\) Gravity from the Dark Energy Density Parameter \(\boldsymbol{\Omega}_{\boldsymbol{\Lambda}}\)

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

\(f(R,T)\) gravity is a widely used extended theory of gravity introduced by Harko et al., which is a straightforward generalization of \(f(R)\) gravity. The action in this extended theory of gravity incorporates well-motivated functional forms of the Ricci scalar \(R\) and the trace of the energy momentum tensor \(T\). The present manuscript aims at constraining the most widely used \(f(R,T)\) gravity model of the form \(f(R+2\lambda T)\) to understand its coherency and applicability in cosmology. We communicate here a novel method to find a lower bound on the model parameter \(\lambda\gtrsim-1.9\times 10^{-8}\) through the equation relating the cosmological constant (\(\Lambda\)) and the critical density of the universe (\(\rho_{\textrm{cr}}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. R. Adler et al., Am. J. Phys. 63, 620 (1995).

    Article  ADS  Google Scholar 

  2. M. P. Hobson, G. P. Efstathiou, and A. N. Lasenby, General Relativity: An Introduction for Physicists (Cambridge University Press, 2006), p. 187.

    Book  Google Scholar 

  3. E. Hubble, Proc. Nat. Acad. Sci. U.S.A, 15, 168 (1929).

    Article  ADS  Google Scholar 

  4. A. G. Reiss et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  5. S. Perlmutter et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  6. R. Rebolo et al., MNRAS 353, 747 (2004).

    Article  ADS  Google Scholar 

  7. E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006).

    Article  ADS  Google Scholar 

  8. H. A. Buchdahl, MNRAS 150, 1 (1970).

    Article  ADS  Google Scholar 

  9. R. Femaro and F. Fiorini, Phys. Rev. D 75, 084031 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  10. T. Harko et al., Phys. Rev. D 84, 024020 (2011).

    Article  ADS  Google Scholar 

  11. S. Nojiri et al., Phys. Suppl. 172, 81 (2008).

    Google Scholar 

  12. P. K. Sahoo, S. K. Tripathy, and P. Sahoo, Mod. Phys. Lett. A 33, 1850193 (2018).

    Article  ADS  Google Scholar 

  13. M. J. S. Houndjo, Int. J. Mod. Phys. D 21, 1250003 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  14. V. Singh and C. P. Singh, Astrophys. Space Sci. 356, 153 (2015).

    Article  ADS  Google Scholar 

  15. V. U. M. Rao and D. C. Papa Rao, Astrophys. Space Sci. 357, 1 (2015).

    Article  Google Scholar 

  16. M. F. Shamir, Int. J. Theor. Phys. 54, 1304 (2015).

    Article  Google Scholar 

  17. R. Zaregonbadi et al., Phys. Rev. D 94, 084052 (2016).

    Article  ADS  Google Scholar 

  18. G. Sun and Y.-C. Huang, Int. J. Mod. Phys. D 25, 1650038 (2016).

    Article  ADS  Google Scholar 

  19. P. Sahoo, S. Bhattacharjee, S. K. Tripathy, and P. K. Sahoo, arXiv: 1907.08682.

  20. S. Bhattacharjee and P. K. Sahoo, Phys. Dark. Universe. 28, 100537 (2020); arXiv: 2003.14211.

  21. M. Sharif and A. Siddiqa, Gen. Rel. Grav. 51, 74 (2019).

    Article  ADS  Google Scholar 

  22. M. E. S. Alves, P. H. R. S. Moraes, J. C. N. de Araujo, and M. Malheiro, Phys. Rev. D 94, 024032 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Z. Bhatti, Z. Yousaf, and M. Yousaf, Phys. Dark Universe 28, 100501 (2020).

    Article  Google Scholar 

  24. F. Rocha et al., arXiv: 1911.08894.

  25. S. I. dos Santos, G. A. Carvalho, P. H. R. S. Moraes, C. H. Lenzi, and M. Malheiro, Eur. Phys. J. Plus 134, 398 (2019).

    Article  Google Scholar 

  26. P. H. R. S. Moraes, J. D. V. Arbanil, and M. Malheiro, J. Cosm. Astron. Phys. 06, 005 (2016).

  27. P. H. R. S. Moraes and P. K. Sahoo, Eur. Phys. J. C 79, 677 (2019).

    Article  ADS  Google Scholar 

  28. E. Elizalde and M. Khurshudyan, Phys. Rev. D 99, 024051 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  29. P. H. R. S. Moraes, W. de Paula, and R. A. C. Correa, Int. J. Mod. Phys. D 28, 1950098 (2019).

    Article  ADS  Google Scholar 

  30. E. Elizalde and M. Khurshudyan, Phys. Rev. D 98, 123525 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  31. P. H. R. S. Moraes and P. K. Sahoo, Phys. Rev. D, 97, 024007 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  32. P. K. Sahoo, P. H. R. S. Moraes, and P. Sahoo, Eur. Phys. J. C 78, 46 (2018).

    Article  ADS  Google Scholar 

  33. P. K. Sahoo, P. H. R. S. Moraes, P. Sahoo, and G. Ribeiro, Int. J. Mod. Phys. D 27, 1950004 (2018).

    Article  ADS  Google Scholar 

  34. P. H. R. S. Moraes and P. K. Sahoo, Phys. Rev. D 96, 044038 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  35. P. H. R. S. Moraes, R. A. C. Correa, and R. V. Lobato, JCAP 07, 029 (2017).

  36. T. Azizi, Int. J. Theor. Phys. 52, 3486 (2013).

    Article  Google Scholar 

  37. Z. Yousaf, M. Ilyas, and M. Z. H. Bhatti, Eur. Phys. J. Plus 132, 268 (2017).

    Article  Google Scholar 

  38. M. Z. Bhatti, Z. Yousaf, and M. Ilyas, J. Astrophys. Astr. 39, 69 (2018).

    Article  ADS  Google Scholar 

  39. Z. Yousaf, Phys. Dark Universe 28, 100509 (2020).

    Article  Google Scholar 

  40. P. K. Sahoo and S. Bhattacharjee, arXiv: 1907.13460.

  41. S. Bhattacharjee and P. K. Sahoo, Eur. Phys. J. C. 80, 289 (2020); arXiv: 2002.11483.

  42. S. Bhattacharjee and P. K. Sahoo, Eur. Phys. J. Plus 135, 350 (2020).

    Article  Google Scholar 

  43. S. Bhattacharjee, arXiv: 2004.06884.

  44. S. Bhattacharjee and P. K. Sahoo, Eur. Phys. J. Plus 135, 86 (2020); arXiv:2001.06569.

  45. Z. Yousaf, K. Bamba, and M. Z. Bhatti, Phys. Rev. D 93, 124048 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  46. A. Friedmann, “Über die Krümmung des Raumes,” Z. Phys. 10 (1), 377–386 (1922).

    Article  ADS  Google Scholar 

  47. P. Rowlands, arXiv: 1306.4620.

  48. S. K. Srivastava, General Relativity and Cosmology (PHI, 2008).

    MATH  Google Scholar 

  49. T. P. Cheng, Relativity, Gravitation and Cosmology: A Basic Introduction (Oxford University Press, New York, 2nd Ed., 2010).

    MATH  Google Scholar 

  50. A. Einstein, “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie,” Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, Berlin, part 1, 142–152.

  51. Planck Collaboration, arXiv: 1807.06209.

Download references

ACKNOWLEDGMENTS

One of the author (PKS) acknowledges DST, New Delhi, India for providing facilities through DST-FIST lab, Department of Mathematics, BITS-Pilani, Hyderabad Campus, where a part of the work was done. We are very much grateful to the honorable referee and the editor for illuminating suggestions that have significantly improved our work in terms of research quality and presentation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Snehasish Bhattacharjee or P. K. Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, S., Sahoo, P.K. Constraining \(\boldsymbol{f(R,T)}\) Gravity from the Dark Energy Density Parameter \(\boldsymbol{\Omega}_{\boldsymbol{\Lambda}}\). Gravit. Cosmol. 26, 281–284 (2020). https://doi.org/10.1134/S0202289320030032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289320030032

Navigation