Skip to main content
Log in

Kinematic Censorship as a Constraint on Allowed Scenarios of High-Energy Particle Collisions

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

In the recent years, it was found that the energy Ec.m. in the center of mass frame of two colliding particles can be unbounded near black holes. If a collision occurs precisely on the horizon, Ec.m. is formally infinite. However, in any physically reasonable situation this is impossible. We collect different scenarios of this kind and show why in every act of collision Ec.m. is indeed finite (although it can be as large as one likes). The factors preventing an infinite energy are diverse: the necessity of infinite proper time, infinite tidal forces, potential barrier, etc. This prompts us to formulate a general principle according to which the limits in which Ec.m.→ 8 are never achieved. We call this the kinematic censorship (KC). Although by itself the validity of KC is quite natural, its application allows one to forbid scenarios of collisions predicting infinite Ec.m. without going into details. The KC is valid even in the test particle approximation, so an explanation of why Ec.m. cannot be infinite does not require references (common in the literature) to a nonlinear regime, back-reaction, etc. The KC remains valid not only for freely moving particles but also if particles are subject to a finite force. For an individual particle, we consider a light-like continuous limit of a timelike trajectory in which the effective mass turns to zero. We show that it cannot be accelerated to an infinite energy during a finite proper time under the action of such a force. As an example, we consider the dynamics of a scalar particle interacting with a background scalar field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Piran, J. Katz, and J. Shaham, “High efficiency of the Penrose mechanism for particle collisions,” As-troph. J. 196, L107 (1975).

    ADS  Google Scholar 

  2. M. Bañados, J. Silk, and S. M. West, “Kerr black holes as particle accelerators to arbitrarily high energy,” Phys. Rev. Lett. 103, 111102 (2009).

    Article  ADS  Google Scholar 

  3. M. Kimura, Kenichi Nakao, and H. Tagoshi, “Acceleration of colliding shells around a black hole: Validity of the test particle approximation in the Banados-Silk-West process,” Phys. Rev. D 83, 044013 (2011).

    Article  ADS  Google Scholar 

  4. E. Berti, V. Cardoso, L. Gualtieri, F. Pretorius, and U. Sperhake, “Comment on ‘Kerr black holes as particle accelerators to arbitrarily high energy’,” Phys. Rev. Lett. 103, 239001 (2009).

    Article  ADS  Google Scholar 

  5. A. A. Grib and Yu. V. Pavlov, “On particles collisions in the vicinity of rotating black holes,” Pis’ma v ZhETF 92, 147 (2010), (JETP Letters 92, 125 (2010)).

    Google Scholar 

  6. I. V. Tanatarov and O. B. Zaslavskii, “Bañados-Silk-West effect with nongeodesic particles: Extremal horizons,” Phys. Rev. D 86, 044019 (2012).

    Article  ADS  Google Scholar 

  7. I. V. Tanatarov and O. B. Zaslavskii, “Banados-Silk-West effect with nongeodesic particles: Nonextremal horizons,” Phys. Rev. D 90, 067502 (2014).

    Article  ADS  Google Scholar 

  8. Ya. B. Zel’dovich and I. D. Novikov, Relativistic Astrophysics. Volume 2—The Structure and Evolution of the Universe (University of Chicago Press, Chicago, IL, 1983).

    Google Scholar 

  9. E. Fermi, “Sopra ifenomeniche avvengono in vici-nanza diunalinea oraria,” Rend. Lincei 31 (1), 21 - 23,51-52, 101 - 103(1922).

    Google Scholar 

  10. P. K. Rashevsky, Riemannian Geometry and Tensor Analysis (Nauka, Moscow, 1967, In Russian).

    MATH  Google Scholar 

  11. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1983).

    MATH  Google Scholar 

  12. N. M. Bocharova, K. A. Bronnikov, and V. N. Mel-nikov, “On an exact solution of the Einstein and massless scalar field equations,” Vestn. Mosk. Univ., Ser. 3: Fiz. Astron. 6, 706 (1970); Moscow Univ. Phys. Bull. 25, 80 (1970).

    Google Scholar 

  13. K. A. Bronnikov, “Scalartensor theory and scalar charge,” Acta Phys. Polon. B 4, 251 (1973).

    MathSciNet  Google Scholar 

  14. J. D. Bekenstein, “Exact solutions of Einstein-conformal scalar equations,” Ann. Phys. (N.Y.) 82, 535 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  15. J. D. Bekenstein, “Black holes with a scalar charge,” Ann. Phys. (N.Y.) 91, 75 (1975).

    Article  ADS  Google Scholar 

  16. Yu. G. Ignatyev and R. F. Miftakhov, “Statistical systems of particles with scalar interaction in cosmology,” Grav. Cosmol. 12, 1 (2006); arXiv: 1101.1655.

    Google Scholar 

  17. Yu. G. Ignatyev and D. Yu. Ignatyev, “Statistical system with phantom scalar interaction in gravitation theory. I. Microscopic dynamics,” Grav. Cosmol. 20, 299 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  18. T. Piran and J. Shaham, “Upperbounds on collisional Penrose process near rotating black-hole horizons,” Phys. Rev. D 16, 1615 (1977).

    Article  ADS  Google Scholar 

  19. O. B. Zaslavskii, “Is the super-Penrose process possible near black holes?” Phys. Rev. D 93, 024056 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. A. Grib and Yu. V. Pavlov, “Are black holes totally black?” Grav. Cosmol. 21, 13 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  21. O. B. Zaslavskii, “White holes as particle accelerators,” Grav. Cosmol. 24, 92 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. V. Toporensky and O. B. Zaslavskii, “Redshift of a photon emitted along the black hole horizon,” Eur. Phys. J. C 77, 179 (2017).

    Article  ADS  Google Scholar 

  23. O. B. Zaslavskii, “Acceleration of particles as universal property of rotating black holes,” Phys. Rev. D 82, 083004 (2010).

    Article  ADS  Google Scholar 

  24. T. Jacobson and T. P. Sotiriou, “Spinning black holes as particle accelerators,” Phys. Rev. Lett. 104, 021101 (2010).

    Article  ADS  Google Scholar 

  25. O. B. Zaslavskii, “Acceleration of particles by nonro-tating charged black holes,” Pis’ma v ZhETF 92, 635 (2010); (JETP Letters 92, 571 (2010)).

    Google Scholar 

  26. A. A. Grib, Yu. V. Pavlov, “On particle collisions near rotating black holes,” Grav. Cosmol. 17, 42 (2011).

    Article  ADS  Google Scholar 

  27. K. Lake, “Particle accelerators inside spinning black holes,” Phys. Rev. Lett. 104, 211102 (2010).

    Article  ADS  Google Scholar 

  28. K. Lake, “Erratum: Particle accelerators inside spinning black holes,” Phys. Rev. Lett. 104, 259903 (2010).

    Article  ADS  Google Scholar 

  29. A. A. Grib and Yu. V. Pavlov, “On particle collisions in the gravitational field of the Kerr black hole,” As-tropart. Phys. 34, 581 (2011).

    Article  ADS  Google Scholar 

  30. O. B. Zaslavskii, “Acceleration of particles near the inner black hole horizon,” Phys. Rev. D 85, 024029 (2012).

    Article  ADS  Google Scholar 

  31. S. Gao and C. Zhong, “Non-extremal Kerr black holes as particle accelerators,” Phys. Rev. D 84, 044006 (2011).

    Article  ADS  Google Scholar 

  32. C. Zhong and S. Gao, “Particle Collisions near the cosmological horizon of a Reissner- Nordstrom-de Sitter black hole,” JETP Letters 94, 589 (2011).

    Article  Google Scholar 

  33. O. B. Zaslavskii, “Black hole with a scalar field as a particle accelerator,” Int. J. Mod. Phys. D 26, 1750108 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  34. M. Patil and P. Joshi, “Kerr naked singularities as particle accelerators,” Class. Quantum Grav. 28, 235012 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  35. R. B. Mann, I. Nagle, and D. R. Terno, “Transition to light-like trajectories in thin shell dynamics,” Nucl. Phys. B 936, 19 (2018).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

O. Z. is grateful to Serguei Krasnikov and Alexey Toporensky for a discussion of Sec. 2 and to Kirill Bronnikov for interest in the materials of Sec. 3.

Funding

This work was supported by the Russian Government Program of Competitive Growth of Kazan Federal University. The work of Yu.P. was also supported by the Russian Foundation for Basic Research, grant No. 18-02-00461-a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. V. Pavlov or O. B. Zaslavskii.

Additional information

The present issue of the journal is No. 100 since it was founded in 1995.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, Y.V., Zaslavskii, O.B. Kinematic Censorship as a Constraint on Allowed Scenarios of High-Energy Particle Collisions. Gravit. Cosmol. 25, 390–396 (2019). https://doi.org/10.1134/S0202289319040091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289319040091

Navigation