Skip to main content
Log in

Study of Entropy-Corrected Models Using Dark Energy in the Framework of a Complementary Gravitational Field

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

The dark energy (DE) model of a complementary gravitational field is used to address the entropy-corrected cosmological model. The dominant DE universe can originate from an indirect coupling between vacuum energy and another complementary gravitational field. This idea is used together with entropy-corrected models to study the evolution of DE in the universe. The zero point energy is calculated from one-loop corrections and used to reconstruct the scale factor and the Hubble parameter. It is then used to evaluate the equation of state (EoS) parameter for both interacting and non-interacting DE and the cosmic pressure. The square of sound speed, used to assess the stability of DE models, and the deceleration parameter are obtained. Further, the geometrical statefinder parameters s and r and a new diagnostic statefinder parameter, om(z), are evaluated and used to distinguish between the energy densities of various DE models. It is found that the studied cosmological functions show strong variation with cosmic time, and numerical results show a good agreement with observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Riess et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  2. L. Amendola and S Tsujikawa, Dark Energy, Theory, and Observation (Cambridge UP, 2010).

    Book  MATH  Google Scholar 

  3. E. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D. 15, 1753 (2006).

    Article  ADS  Google Scholar 

  4. S. Tsujikawa, Astroph. Space Sci. 370, 331 (2011).

    ADS  Google Scholar 

  5. B. Ratra and P. Peebles, Phys.Rev. D 37, 3406 (1988).

    Article  ADS  Google Scholar 

  6. C. Armendaris-Picon, V. F. Mukhanov, and P. J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000).

    Article  ADS  Google Scholar 

  7. K. Bamba et al., Astroph. Space Sci. 342, 155 (2012).

    Article  ADS  Google Scholar 

  8. Ayman. A. Aly, Eur. Phys. J. Plus. 130, 4 (2015).

    Article  Google Scholar 

  9. J. G. Silva and A. F. Santos, Eur. Phys. J. C. 73, 2500 (2013).

    Article  ADS  Google Scholar 

  10. R. Myrzakulov, S. Gomez, and D. Tureanu, Gen. Rel. Grav. 43, 1671 (2011).

    Article  ADS  Google Scholar 

  11. S. Nojiri and S. Odintsov, Phys. Rev. D 74, 086005 (2006).

    Article  ADS  Google Scholar 

  12. E. Kiritsis and G. Kofinas, Nucl. Phys. B.821, 467 (2009).

    Article  ADS  Google Scholar 

  13. S. Nojiri and S. Odintsov, Phys. Lett. B 631, 1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Whitaker, Einstein, the Quantum Dilemma (From Quantum Theory to Quantum Dillema) (Cambridge UP, 2006), p. 414.

    Google Scholar 

  15. F. Darabi, arXiv: 0508106.

  16. Y. Abe, M. Horikoshi, and Y. Kawamura, Int. J. Mod. Phys. A. 32, 7(2017).

    Article  Google Scholar 

  17. J. D. Bekenstein, Lett. Nuovo Cim. 4, 737 (1972).

    Article  ADS  Google Scholar 

  18. F. Darabi, hep-ph/0508106.

  19. A. Awad, Phys. Rev. D 87, 109902 (2013).

    Article  ADS  Google Scholar 

  20. X. Zhang, Phys. Rev. D. 74, 103505 (2006).

    Article  ADS  Google Scholar 

  21. A. Jawad and S. Rani, AHEP 2015, 952156 (2015).

    Google Scholar 

  22. K. Bamba and C. Q. Geng, JCAP 11, 008 (2011).

    Article  ADS  Google Scholar 

  23. R. Myrzakulov, Eur. Phys. J. C. 71, 1752 (2011).

    Article  ADS  Google Scholar 

  24. E. O. Kahya et al., Eur. Phys. J. C. 54, 9, 1434 (2015).

    Google Scholar 

  25. K. Y. Kim, H. W. Lee, and Y. S. Myung, Phys. Lett. B 660, 118 (2008).

    Article  ADS  Google Scholar 

  26. M. Jamil, D. Momeni, and R. Myrzakulov, Eur. Phys. J. C. 73, 2267 (2013).

    Article  ADS  Google Scholar 

  27. N. Mazumder, R. Biswas, and S. Chakraborty, arXiv: 1110.4550.

  28. M. Jamil, D. Momeni and R. Myrzakulov, Gen. Rel. Grav. 45, 263 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman A. Aly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, A.A., Selim, M.M. Study of Entropy-Corrected Models Using Dark Energy in the Framework of a Complementary Gravitational Field. Gravit. Cosmol. 25, 277–282 (2019). https://doi.org/10.1134/S0202289319030034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289319030034

Navigation