New Quantum Structure of Space-Time


Starting from quantum theory (instead of general relativity) to approach quantum gravity within a minimal setting allows us here to describe the quantum space-time structure and the quantum light cone. From the classical-quantum duality and quantum harmonic oscillator (X, P) variables in global phase space, we promote the space-time coordinates to quantum noncommuting operators. The phase space instanton (X, P = iT) describes the hyperbolic quantum space-time structure and generates the quantum light cone. The classical Minkowski space-time null generators X = ±T disappear at the quantum level due to the relevant quantum [X, T] commutator which is always nonzero. A new quantum Planck scale vacuum region emerges. We describe the quantum Rindler and quantum Schwarzschild-Kruskal space-time structures. The horizons and the r = 0 space-time singularity are quantum mechanically erased. The four Kruskal regions merge inside a single quantum Planck scale “world.” The quantum space-time structure consists of hyper bolic discrete levels of odd numbers (X2T2)n = (2n + 1) (in Planck units ), n = 0,1, 2....(Xn, Tn) and the mass levels being v(2n + 1). A coherent picture emerges: large n levels are semiclassical tending towards a classical continuum space-time. Low n are quantum, the lowest mode (n = 0) being the Planck scale. Two dual (±) branches are present in the local variables (v2n + 1 ± v2n) reflecting the duality of the large and small n behaviors and covering the whole mass spectrum from the largest astrophysical objects in branch (+) to quantum elementary particles in branch (—) passing by the Planck mass. Black holes belong to both branches (+) and (—).

This is a preview of subscription content, log in to check access.


  1. 1.

    N. G. Sanchez, “The classical-quantum duality of nature including gravity,” Int. J. Mod. Phys. D 28, 1950055 (2019).

    MathSciNet  Article  ADS  Google Scholar 

  2. 2.

    N. G. Sanchez, Int. J. Mod. Phys. A 19, 4173 (2004).

    Article  ADS  Google Scholar 

  3. 3.

    N. Sanchez, “Semiclassical quantum gravity in two and four dimensions,” in Gravitation in Astro physics (Cargese 1986, NATO ASI Series B156) Eds. B. Carter and J. B. Hartle (Plenum Press, N.Y., 1987); pp. 371–381.

    Google Scholar 

  4. 4.

    N. Sanchez and B. F. Whiting, Nucl. Phys. B 283, 605 (1987).

    Article  ADS  Google Scholar 

  5. 5.

    G. W. Gibbons, Nucl. Phys. B 271, 497 (1986).

    Article  ADS  Google Scholar 

  6. 6.

    N. Sanchez, Nucl. Phys B 294, 1111 (1987).

    Article  ADS  Google Scholar 

  7. 7.

    G. Domenech, M. L. Levinas, and N. Sanchez, Int. J. Mod. Phys. A 3, 2567 (1988).

    Article  ADS  Google Scholar 

  8. 8.

    G. ’t Hooft, Found. Phys. 49 +++(9), 1185 (2016).

    Article  Google Scholar 

  9. 9.

    G. ’t Hooft, arXiv: 1605.05119.

  10. 10.

    M. Ramon Medrano and N. Sanchez, Phys. Rev. D 61, 084030 (2000).

    MathSciNet  Article  ADS  Google Scholar 

  11. 11.

    M. Ramon Medrano and N. Sanchez, Int. J. Mod. Phys. A 22, 6089 (2007) and references therein.

    Article  ADS  Google Scholar 

  12. 12.

    D. J. Cirilo-Lombardo and N. G. Sanchez, Int. J. Mod. Phys. A 23, 975 (2008).

    Article  ADS  Google Scholar 

  13. 13.

    N. G. Sanchez, in preparation.

Download references


The author thanks G. ’t Hooft for interesting and stimulating communications on several occasions, M. Ramon Medrano for useful discussions and en-couredgement and F. Sevre for help with the figures.

Author information



Corresponding author

Correspondence to Norma G. Sanchez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanchez, N.G. New Quantum Structure of Space-Time. Gravit. Cosmol. 25, 91–102 (2019).

Download citation