Skip to main content
Log in

Dyonic Black Holes with Nonlinear Logarithmic Electrodynamics

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

A new dyonic solution for black holes with spherically symmetric configurations in general relativity is obtained. We study black holes possessing electric and magnetic charges, and the source of the gravitational field is an electromagnetic field obeying logarithmic electrodynamics. This particular form of nonlinear electrodynamics is of interest because of its simplicity. Corrections to Coulomb’s law and the Reissner-Nordström solution are found. We calculate the Hawking temperature of black holes and show that second-order phase transitions occur for some parameters of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mignemi, Phys. Rev. D 51, 934 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  2. D. P. Jatkar, S. Mukherji and S. Panda, Nucl. Phys. B 484, 223 (1997).

    Article  ADS  Google Scholar 

  3. D. Garfinkle, G. T. Horowitz, and A. Strominger, Phys. Rev. D 43, 3140 (1991). Erratum: Phys. Rev. D 45, 3888 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  4. D. A. Lowe and A. Strominger, Phys. Rev. Lett. 73, 1468 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  5. A. Sen, Nucl. Phys. B 404, 109 (1993).

    Article  ADS  Google Scholar 

  6. M. Cvetic and A. A. Tseytlin, Phys. Rev. D 53, 5619 (1996). Erratum: Phys. Rev. D 55, 3907 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Mignemi and N. R. Stewart, Phys. Rev. D 47, 5259 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  8. S. Mignemi, Phys. Rev. D 51, 934 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  9. A. H. Chamseddine and W. A. Sabra, Phys. Lett. B 485, 301 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  10. D._D. K. Chow and G. Compere, Phys. Rev. D 89, 065003 (2014).

    Article  ADS  Google Scholar 

  11. P. Meessen, T. Ortn, and P. F. Ramrez, JHEP 1710, 066 (2017).

    Article  ADS  Google Scholar 

  12. S. Panahiyan, S. H. Hendi, and N. Riazi, Nucl. Phys. B 938, 388 (2019).

    Article  ADS  Google Scholar 

  13. S. J. Poletti, J. Twamley, and D. L. Wiltshire, Class. Quantum Grav. 12, 1753 (1995). Erratum: Class. Quantum Grav. 12, 2355 (1995).

    Article  ADS  Google Scholar 

  14. A. D. Shapere, S. Trivedi, and F. Wilczek, Mod. Phys. Lett. A 6, 2677 (1991).

    Article  ADS  Google Scholar 

  15. H. Lu, Y. Pang, and C.N. Pope, JHEP 1311, 033 (2013).

    Article  ADS  Google Scholar 

  16. M. Bravo-Gaete and M. Hassaine, Phys. Rev. D 97, 024020 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  17. S. A. Hartnoll and P. Kovtun, Phys. Rev. D 76, 066001 (2007).

    Article  ADS  Google Scholar 

  18. S. A. Hartnoll, P. K. Kovtun, M. Muller, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

    Article  ADS  Google Scholar 

  19. M. M. Caldarelli, O. J. C. Dias, and D. Klemm, JHEP 0903, 025 (2009).

    Article  ADS  Google Scholar 

  20. T. Albash and C. V. Johnson, JHEP 0809, 121 (2008).

    Article  ADS  Google Scholar 

  21. K. Goldstein, N. Iizuka, S. Kachru, S. Prakash, S. P. Trivedi, and A. Westphal, JHEP 1010, 027 (2010).

    Article  ADS  Google Scholar 

  22. S. Dutta, A. Jain, and R. Soni, JHEP 1312, 060 (2013).

    Article  ADS  Google Scholar 

  23. S. H. Hendi, N. Riazi, and S. Panahiyan, Ann. Phys. (Berlin) 530, 1700211 (2018).

    Article  ADS  Google Scholar 

  24. M. Born and L. Infeld, Proc. R. Soc. London 144, 425 (1934).

    Article  ADS  Google Scholar 

  25. H. H. Soleng, Phys. Rev. D 52, 6178 (1995).

    Article  ADS  Google Scholar 

  26. I. Dymnikova, Gen. Rev. Grav. 24, 235 (1992).

    Article  ADS  Google Scholar 

  27. I. Dymnikova, Class. Quantum Grav. 21, 4417 (2004).

    Article  ADS  Google Scholar 

  28. I. Dymnikova and E. Galaktionov, Class. Quantum Grav. 32, 165015 (2015).

    Article  ADS  Google Scholar 

  29. D. M. Gitman and A. E. Shabad, Eur. Phys. J. C 74, 3186 (2014).

    Article  ADS  Google Scholar 

  30. C. V. Costa, D. M. Gitman, and A. E. Shabad, Phys. Scripta 90, 074012 (2015).

    Article  ADS  Google Scholar 

  31. S. I. Kruglov, Ann. Phys. 353, 299 (2015).

    Article  ADS  Google Scholar 

  32. S. I. Kruglov, Ann. Phys. (Berlin) 527, 397 (2015).

    Article  ADS  Google Scholar 

  33. S. I. Kruglov, Commun. Theor. Phys. 66, 59 (2016).

    Article  ADS  Google Scholar 

  34. S. I. Kruglov, Eur. Phys. J. C 75, 88 (2015).

    Article  ADS  Google Scholar 

  35. S. I. Kruglov, Mod. Phys. Lett. A 32, 1750201 (2017).

    Article  ADS  Google Scholar 

  36. W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).

    Article  ADS  Google Scholar 

  37. R. Pellicer and R. J. Torrence, J. Math. Phys. 10, 1718 (1969).

    Article  ADS  Google Scholar 

  38. H. P. de Oliveira, Class. Quantum Grav. 11, 1469 (1994).

    Article  ADS  Google Scholar 

  39. E. Ayón-Beato and A. Garćia, Phys. Rev. Lett. 80, 5056 (1998).

    Article  ADS  Google Scholar 

  40. K. A. Bronnikov, V. N. Melnikov, G. N. Shikin, and K. P. Staniukovich, Ann. Phys. 118, 84 (1979).

    Article  ADS  Google Scholar 

  41. K. A. Bronnikov, Phys. Rev. D 63, 044005 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  42. K. A. Bronnikov, Phys. Rev. Lett. 85, 4641 (2000).

    Article  ADS  Google Scholar 

  43. K. A. Bronnikov, G. N. Shikin, and E. N. Sibileva, Grav. Cosmol. 9, 169 (2003).

    ADS  Google Scholar 

  44. A. Burinskii and S. R. Hildebrandt, Phys. Rev. D 65, 104017 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  45. J. Diaz-Alonso and D. Rubiera-Garcia, Phys. Rev. D 81, 064021 (2010).

    Article  ADS  Google Scholar 

  46. N. Breton, Gen. Rel. Grav. 37, 643 (2005).

    Article  ADS  Google Scholar 

  47. N. Breton, Phys. Rev. D 67, 124004 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  48. M. Novello, S. E. Perez Bergliaffa, and J. M. Salim, Class. Quantum Grav. 17, 3821 (2000).

    Article  ADS  Google Scholar 

  49. R. Garcia-Salcedo, T. Gonzalez, and I. Quiros, Phys. Rev. D 89, 084047 (2014).

    Article  ADS  Google Scholar 

  50. S. H. Hendi, Ann. Phys. 333, 282 (2013).

    Article  ADS  Google Scholar 

  51. J._P. S. Lemos and V. T. Zanchin, Phys. Rev. D 83, 124005 (2011).

    Article  ADS  Google Scholar 

  52. L. Balart and E. C. Vagenas, Phys. Rev. D 90, 124045 (2014).

    Article  ADS  Google Scholar 

  53. S. I. Kruglov, Phys. Rev. D 94, 044026 (2016).

    Article  MathSciNet  ADS  Google Scholar 

  54. S. I. Kruglov, Europhys. Lett. 115, 60006 (2016).

    Article  ADS  Google Scholar 

  55. S. I. Kruglov, Ann. Phys. (Berlin) 528, 588 (2016).

    Article  ADS  Google Scholar 

  56. S. I. Kruglov, Int. J. Mod. Phys. D 26, 1750075 (2017).

    Article  ADS  Google Scholar 

  57. S. I. Kruglov, Int. J. Geom. Meth. Mod. Phys. 12, 1550073 (2015).

    Article  Google Scholar 

  58. H. Yajima and T. Tamaki, Phys. Rev. D 63, 064007 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  59. K. A. Bronnikov, Grav. Cosmol. 23, 343 (2017).

    Article  ADS  Google Scholar 

  60. K. A. Bronnikov, Int. J. Mod. Phys. D 27, 1841005 (2018).

    Article  ADS  Google Scholar 

  61. S. I. Kruglov, Universe 4, 66 (2018).

    Article  ADS  Google Scholar 

  62. S. I. Kruglov, Int. J. Mod. Phys. A 33, 1850023 (2018).

    Article  ADS  Google Scholar 

  63. S. I. Kruglov, Int. J. Mod. Phys. A 32, 1750147 (2017).

    Article  ADS  Google Scholar 

  64. S. I. Kruglov, Ann. Phys. (Berlin) 529, 1700073 (2017).

    Article  ADS  Google Scholar 

  65. S. I. Kruglov, Ann. Phys. 383, 550 (2017).

    Article  ADS  Google Scholar 

  66. R. García-Salcedo and N. Breton, Int. J. Mod. Phys. A 15, 4341 (2000).

    ADS  Google Scholar 

  67. C. S. Camara, M. R. de Garcia Maia, J. C. Carvalho, and J. A. S. Lima, Phys. Rev. D 69, 123504 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  68. E. Elizalde, J. E. Lidsey, S. Nojiri, and S. D. Odintsov, Phys. Lett. B 574, 1 (2003).

    Article  ADS  Google Scholar 

  69. M. Novello, S. E. Perez Bergliaffa, and J. M. Salim, Phys. Rev. D 69, 127301 (2004).

    Article  ADS  Google Scholar 

  70. M. Novello, E. Goulart, J. M. Salim, and S. E. Perez Bergliaffa, Class. Quantum Grav. 24, 3021 (2007).

    Article  ADS  Google Scholar 

  71. D. N. Vollick, Phys. Rev. D 78, 063524 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  72. S. I. Kruglov, Phys. Rev. D 92, 123523 (2015).

    Article  MathSciNet  ADS  Google Scholar 

  73. S. I. Kruglov, Int. J. Mod. Phys. A 32, 1750071 (2017).

    Article  ADS  Google Scholar 

  74. S. I. Kruglov, Int. J. Mod. Phys. A 31, 1650058 (2016).

    Article  ADS  Google Scholar 

  75. S. I. Kruglov, Int. J. Mod. Phys. D 25, 1640002 (2016).

    Article  ADS  Google Scholar 

  76. G. W. Gibbons and D. Rasheed, Nucl. Phys. B 454, 185 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kruglov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruglov, S.I. Dyonic Black Holes with Nonlinear Logarithmic Electrodynamics. Gravit. Cosmol. 25, 190–195 (2019). https://doi.org/10.1134/S0202289319020105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289319020105

Navigation