Skip to main content
Log in

Rotating Cylinders with Anisotropic Fluids in General Relativity

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We consider anisotropic fluids with directional pressures pi = wiρ (ρ is the density, wi = const, i = 1, 2, 3) as sources of gravity in stationary cylindrically symmetric space-times. We describe a general way of obtaining exact solutions with such sources, where the main features are splitting of the Ricci tensor into static and rotational parts and using the harmonic radial coordinate. Depending on the values of wi, it appears possible to obtain general or special solutions to the Einstein equations, thus recovering some known solutions and finding new ones. Three particular examples of exact solutions are briefly described: with a stiff isotropic perfect fluid (p = ρ), with a distribution of cosmic strings of azimuthal direction (i.e., forming circles around the z axis), and with a stationary combination of two opposite radiation flows along the z axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Lanczos, “’´Ueber eine station’´ are Kosmologie in Sinne der Einsteinischen Gravitationstheories,” Z. Physik 21, 73 (1924).

    Article  ADS  Google Scholar 

  2. T. Lewis, “Some special solutions of the equations of axially symmetric gravitational fields,” Proc. R. Soc. A 136, 176 (1932).

    Article  MATH  ADS  Google Scholar 

  3. N. O. Santos, “Solution of the vacuum Einstein equations with nonzero cosmological constant for a stationary cylindrically symmetric spacetime,” Class. Quantum Grav. 10, 2401 (1993).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. A. Krasinski, “Solutions of the Einstein field equations for a rotating perfect fluid II: properties of the flow-stationary and and vortex-homogeneous solutions,” Acta Phys. Pol. 6, 223 (1975).

    MathSciNet  ADS  Google Scholar 

  5. M. A. H. MacCallum and N. O. Santos, “Stationary and static cylindrically symmetric Einstein spaces of the Lewis form,” Class. Quantum Grav. 15, 1627 (1998).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. K. A. Bronnikov, V. G. Krechet, and José P. S. Lemos, “Rotating cylindrical wormholes,” Phys. Rev. D 87, 084060 (2013); arXiv: 1303.2993.

    Article  ADS  Google Scholar 

  7. K. A. Bronnikov and V. G. Krechet, “Rotating cylindrical wormholes and energy conditions,” Int. J. Mod. Phys. A 31, 1641022 (2016); arXiv: 1509.04665.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. C. Erices and C. Martinez, “Stationary cylindrically symmetric spacetimes with amassless scalar field and a nonpositive cosmological constant,” Phys. Rev. D 92, 044051 (2015).

    Article  MathSciNet  ADS  Google Scholar 

  9. W. J. van Stockum, “The gravitational field of a distribution of particles rotating about an axis of symmetry,” Proc. Roy. Soc. Edinburgh A 57, 135 (1937).

    Article  MATH  Google Scholar 

  10. W. B. Bonnor and B. R. Steadman, “A vacuum exterior to Maitra’s cylindrical dust solution,” Gen. Rel. Grav. 41, 1381 (2009).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. B. V. Ivanov, “The general double-dust solution,” grqc/0209032

  12. B. V. Ivanov, “Rigidly rotating cylinders of charged dust,” Class. Quantum Grav. 19, 5131 (2002); grqc/0207013.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. N. O. Santos and R. P. Mondaini, “Rigidly rotating relativistic generalized dust cylinder,” Nuovo Cim. B. 72, 13 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  14. C. Hoenselaers and C. V. Vishveshwara, “A relativistically rotating fluid cylinder,” Gen. Rel. Grav. 10, 43–51 (1979).

    Article  MATH  ADS  Google Scholar 

  15. W. Davidson, “Barotropic perfect fluid in steady cylindrically symmetric rotation,” Class. Quantum Grav. 14, 119 (1997).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. W. Davidson, “A cylindrically symmetric stationary solution of Einstein’s equations describing a perfect fluid of finite radius,” Class. Quantum Grav. 17, 2499 (2000).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. D. Sklavenites, “Stationary perfect fluid cylinders,” Class. Quantum Grav. 16, 2753 (1999).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. V. D. Ivashchuk, “Composite S-brane solutions related to Toda-type systems,” Class. Quantum Grav. 20, 261 (2003); hep-th/0208101.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. B. V. Ivanov, “On rigidly rotating perfect fluid cylinders,” Class. Quantum Grav. 19, 3851 (2002); grqc/0205023.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. P. S. Letelier and E. Verdaguer, “Anisotropic fluid with SU(2) type structure in general relativity: A model of localized matter,” J.Math. Phys. 28, 2431 (1987).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. L. Herrera, G. Le Denmat, G. Marcilhacy, and N. O. Santos, “Static cylindrical symmetry and conformal flatness,” Int. J. Mod. Phys. D 14, 657 (2005); gr-qc/0411107.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. F. Debbasch, L. Herrera, P. R. C. T. Pereira, and N. O. Santos, “Stationary cylindrical anisotropic fluid,” Gen. Rel. Grav. 38, 1825 (2006); grqc/0609068.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. H. Stephani, D. Kramer, M. A. H. MacCallum, C. Hoenselaers, and E. Herlt, Exact solutions of Einstein’s field equations, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2009).

    MATH  Google Scholar 

  24. K. A. Bronnikov, N. O. Santos, and Anzhong Wang, “Cylindrical systems in general relativity,” arXiv: 1901.06561.

  25. K. A. Bronnikov, “Static fluid cylinders and plane layers in general relativity,” J. Phys. A, Math. Gen. 12, 201 (1979).

    Article  ADS  Google Scholar 

  26. K. A. Bronnikov and José P. S. Lemos, “Cylindrical wormholes,” Phys. Rev. D 79, 104019 (2009); arXiv: 0902.2360.

    Article  ADS  Google Scholar 

  27. K. A. Bronnikov and, V. G. Krechet, “Potentially observable cylindrical wormholes without exotic matter in GR,” arXiv: 1807.03641; Phys. Rev. D, to appear.

  28. K. A. Bronnikov, S. V. Bolokhov, and M. V. Skvortsova, “Cylindrical wormholes:a search for viable phantom-free models in GR,” Int. J. Mod. Phys. D 28, 1941008 (2019).

    Article  Google Scholar 

  29. V. G. Krechet, Izvestiya Vuzov, Fiz., No. 10, 57 (2007).

    Google Scholar 

  30. V. G. Krechet and D. V. Sadovnikov, Grav. Cosmol. 15, 337 (2009); arXiv: 0912.2181.

    Article  ADS  Google Scholar 

  31. K. A. Bronnikov and S. G. Rubin, Black Holes, Cosmology and Extra Dimensions (World Scientific, 2012).

    Book  MATH  Google Scholar 

  32. G. Darmois, Mémorial des Sciences Mathematiques (Gauthier-Villars, Paris, 1927).

    Google Scholar 

  33. W. Israel, Nuovo Cim. B 48, 463 (1967).

    Article  ADS  Google Scholar 

  34. V. A. Berezin, V. A. Kuzmin, and I. I. Tkachev, Phys. Rev. D 36, 2919 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  35. K. A. Bronnikov, “Rotating cylindrical wormholes: A no-go theorem,” J. Phys. Conf. Series 675, 012028 (2016); arXiv: 1509.06924.

    Article  Google Scholar 

  36. K. A. Bronnikov, S.-W. Kim, and M. V. Skvortsova, “The Birkhoff theorem and string clouds,” Class. Quantum Grav. 33, 195006 (2016).

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Bolokhov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolokhov, S.V., Bronnikov, K.A. & Skvortsova, M.V. Rotating Cylinders with Anisotropic Fluids in General Relativity. Gravit. Cosmol. 25, 122–130 (2019). https://doi.org/10.1134/S020228931902004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S020228931902004X

Navigation