Advertisement

Gravitation and Cosmology

, Volume 25, Issue 2, pp 157–163 | Cite as

De Sitter-Invariant Special Relativity and Galaxy Rotation Curves

  • A. AraujoEmail author
  • D. F. López
  • J. G. Pereira
Article
  • 11 Downloads

Abstract

Owing to the existence of an invariant length at the Planck scale, Einstein’s special relativity breaks down at that scale. A possible solution to this problem is arguably to replace the Poincaré-invariant Einstein special relativity with a de Sitter-invariant special relativity. In addition to reconciling Lorentz symmetry with the existence of an invariant length, such replacement produces concomitant changes in all relativistic theories, including general relativity, which becomes what we have called de Sitter modified general relativity. In this paper, the Newtonian limit of this theory is used to study the circular velocity of stars around the galactic center. It is shown that the de Sitter modified Newtonian force—which includes corrections coming from the underlying local kinematics—could possibly explain the rotation curves of galaxies without the necessity to suppose the existence of a dark matter halo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Aldrovandi and J. G. Pereira, An Introduction to Geometrical Physics, second edition (World Scientific, Singapore, 2016).CrossRefzbMATHGoogle Scholar
  2. 2.
    R. Aldrovandi, J. P. Beltrán Almeida, and J. G. Pereira, “De Sitter special relativity,” Class. Quantum Grav. 24, 1385 (2007); gr-qc/0606122.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    S. Cacciatori, V. Gorini, and A. Kamenshchik, “Special relativity in the 21st century,” Ann. der Physik (Berlin) 17, 728 (2008); arXiv: 0807.3009.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    I. Licata, L. Chiatti, and E. Benedetto, de Sitter Projective Relativity (SpringerBriefs in Physics, 2017).CrossRefzbMATHGoogle Scholar
  5. 5.
    A. Araujo, H. Jennen, J. G. Pereira, A. C. Sampson, and L. L. Savi, “On the spacetime connecting two aeons in conformai cyclic cosmology,” Gen. Rel. Grav. 47, 151 (2015); arXiv: 1503.05005.CrossRefzbMATHGoogle Scholar
  6. 6.
    R. Aldrovandi and J. G. Pereira, “Is physics asking for a new kinematics?” Int. J. Mod. Phys. D 17, 2485 (2008); arXiv: 0805.2584.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    F. Mansouri, “Non-vanishing cosmological constant, phase transitions, and A—dependence of high energy processes,” Phys. Lett. B 538, 239 (2002); hepth/0203150.CrossRefzbMATHGoogle Scholar
  8. 8.
    H. Jennen, Cartan geometry of spacetimes with non-constant cosmological function A, Phys. Rev. D 90, 084046 (2014); arXiv: 1406.2621.CrossRefGoogle Scholar
  9. 9.
    See, for example, S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008).Google Scholar
  10. 10.
    A. G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astroph. J. 116, 1009 (1998); astro-ph/9805201.Google Scholar
  11. 11.
    S. Perlmutter et al., “Measurements of Omega and Lambda from 42 high-redshift supernovae,” Astroph. J. 517, 565 (1999); astro-ph/9812133.CrossRefzbMATHGoogle Scholar
  12. 12.
    P. de Bernardis et al, “A flat universe from high-resolution maps of the cosmic microwave background radiation,” Nature 404, 955 (2000); astro-ph/0004404.CrossRefGoogle Scholar
  13. 13.
    A. Araujo, D. F. López, and J. G. Pereira, “De Sitter invariant special relativity and the dark energy problem,” Class. Quantum Grav. 34, 115014 (2017); arXiv: 1704.02120.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    R. Sharpe, Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program (Springer, Berlin, 1997).zbMATHGoogle Scholar
  15. 15.
    F. Gürsey, “Introduction to the de Sitter group,” in Group Theoretical Concepts and Methods in Elementary Particle Physics, ed. by F. Gürsey (Gordon and Breach, New York, 1962).Google Scholar
  16. 16.
    J. G. Pereira and A. C. Sampson, “De Sitter geodesics: reappraising the notion of motion,” Gen. Rel. Grav. 44, 1299 (2012); arXiv: 1110.0965.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    G. W. Gibbons and C. E. Patricot, “Newton-Hooke spacetimes, Hpp-waves and the cosmological constant,” Class. Quantum Grav. 20, 5225 (2003); hep-th/0308200.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    J. Binney and S. Tremaine, Galactic Dynamics, 2nd edition (Princeton University Press, Princeton, 2008).zbMATHGoogle Scholar
  19. 19.
    See, for example, V. Trimble, “Existence and nature of dark matter in the universe,” Ann. Rev. Astron. Astrophys. 25, 425 (1987).CrossRefGoogle Scholar
  20. 20.
    M. Milgrom, “A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis,” Astroph. J. 270, 365 (1983).CrossRefGoogle Scholar
  21. 21.
    E. P. Verlinde, “On the origin of gravity and the laws of Newton,” J. High Energ. Phys. 2011, 29 (2011); arXiv: 1001.0785.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    L. Chiatti, “Cosmos and particles: a different view of dark matter,” Open Astron. J. 5, 44 (2012).CrossRefGoogle Scholar
  23. 23.
    Paul J. McMillan, “The mass distribution and gravitational potential of the Milky Way,” MNRAS 465, 76 (2017); arXiv: 1608.00971.CrossRefGoogle Scholar
  24. 24.
    S. S. McGaugh, F. Lelli, J. M. Schombert, “Radial acceleration relation in rotationally supported galaxies,” Phys. Rev. Lett. 117, 201101 (2016); arXiv: 1609.05917.CrossRefGoogle Scholar
  25. 25.
    R. Genzel et al., “Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago,” Nature 543, 397 (2017); arXiv: 1703.04310.CrossRefGoogle Scholar
  26. 26.
    D. S. Akerib et al., “Results from a search for dark matter in LUX with 332 live days of exposure,” Phys. Rev. Lett. 118, 021303 (2017); arXiv: 1608.07648.CrossRefGoogle Scholar
  27. 27.
    A. Tan et al., “Dark matter results from first 98.7 days of data from the PandaX-II experiment,” Phys. Rev. Lett. 117, 121303 2016; arXiv: 1607.07400.CrossRefGoogle Scholar
  28. 28.
    E. Aprile et al., “XENON 100 dark matter results from a combination of 477 live days,” Phys. Rev. D 94, 122001 (2016); arXiv: 1609.06154.CrossRefGoogle Scholar
  29. 29.
    K. Schutz and K. M. Zurek, “Detectability of light dark matter with superfluid helium,” Phys. Rev. Lett. 117, 121302 (2016); arXiv: 1604.08206.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Instituto de Física TeóricaUniversidade Estadual PaulistaSão PauloBrazil
  2. 2.Departamento de MatemáticasUniversidad Sergio ArboledaBogotáColombia
  3. 3.Universidad Tecnológica de PereiraPereiraColombia

Personalised recommendations