Skip to main content
Log in

The Charge in a Lift. A Covariance Problem

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We analyze the classical problemof a charge that falls in a gravitational field, Einstein’s famous Gedankenexperiment. The goal of this paper is to analyze an original approach developed by Soker and Harpaz (2000) based on what we have called Larmor “whiplash”. The authors consider the case of a charge freely falling in a uniform gravitational field and the case of a charge supported at rest in a gravitational field. Instead, starting from Thomson’s geometrical proof of the Larmor relation, we consider the case of a freely falling charge in a “real” gravitational field. In this case, we believe that tidal effects are present, and the charge will radiate. We also make some reflections about the equivalence principle, understood as general covariance, and about the metric construction according to Fock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. N. Yang, Physics Today 33 (6), 42 (1980).

    Article  MathSciNet  Google Scholar 

  2. V. A. Fock, The Theory of Space, Time and Gravitation (Pergamon Press, Oxford, 1964).

    MATH  Google Scholar 

  3. E. Benedetto and A. Feoli, Eur. J. Phys. 38, 055601 (2017).

    Article  Google Scholar 

  4. J. D. Jackson, Classical Electrodynamics (2nd edn. Wiley, New York, 1975).

    MATH  Google Scholar 

  5. J. Larmor, “A dynamical theory of the electric and luminiferous medium, Part III,” Phil. Trans. Roy. Soc. (London) A 190,205 (1897).

    Article  ADS  MATH  Google Scholar 

  6. M. S. Longair, High Energy Astrophysics (3rd edition, Cambridge UP, Cambridge, 2011).

    Google Scholar 

  7. http://www.mathpages.com/home/kmath528/kmath528.htm

  8. F. Rohrlich, Classical Charged Particles. Foundations of Their Theory (Volume in the Addison-Wesley Series in Advanced Physics, Boston, 1965).

    MATH  Google Scholar 

  9. A. Harpaz and N. Soker, Int. J. Mod. Phys. A 20, 2309 (2005).

    Article  ADS  Google Scholar 

  10. N. Soker and A. Harpaz, Gen. Rel.Grav., 36, 315 (2004).

    Article  ADS  Google Scholar 

  11. A. Harpaz and N. Soker, Found. Phys. 31 (6), 935 (2001)

    Article  Google Scholar 

  12. A. Harpaz and N. Soker, Int. J. Theor. Phys. 39, 2867 (2000).

    Article  Google Scholar 

  13. T. Fulton and F. Rohrlich, Ann. Phys. 9, 499 (1960).

    Article  ADS  Google Scholar 

  14. D. W. Kraft and L. Motz, Mod. Phys. Lett. A 13, 819 (1998).

    Article  ADS  Google Scholar 

  15. H. C. Ohanian and R. Ruffini, Gravitation and Spacetime (Cambridge UP, Cambridge, 2013).

    Book  MATH  Google Scholar 

  16. E. Benedetto, Adv. Studies Theor. Phys., 8 (12), 535 (2014).

    Article  MathSciNet  Google Scholar 

  17. J. van Dongen, Einstein’s Unification (Cambridge UP, Cambridge, 2010).

    Book  MATH  Google Scholar 

  18. F. Tamburini, M. De Laurentis, and I. Licata, arXiv: 1702.04096.

  19. S. N. Lyle, Uniformly Accelerating Charged Particles. A Threat to the Equivalence Principle (Springer-Verlag, Berlin, 2008).

    Book  MATH  Google Scholar 

  20. C. Rovelli, Int. J. Theor, Phys. 35, 1637 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmo Benedetto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Licata, I., Benedetto, E. The Charge in a Lift. A Covariance Problem. Gravit. Cosmol. 24, 173–177 (2018). https://doi.org/10.1134/S020228931802010X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S020228931802010X

Navigation