Skip to main content
Log in

DE-DM Unification Based on Space-Time Symmetry

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

The algebraic classification of stress-energy tensors includes tensors whose symmetry is partly broken as compared with Einstein’s maximally symmetric cosmological term. This allows us to introduce, in a general setting, a vacuum dark fluid with variable density and pressures approaching the cosmological constant in certain space-time regions. The relevant class of Einstein equations describes cosmological models with time-evolving and spatially inhomogeneous vacuum dark energy and compact objects with de Sitter interiors generically related to vacuum dark energy, which can be responsible for observational effects typical of dark matter. The mass of objects is generically related to breaking of space-time symmetry from the de Sitter group. We outline the basic generic properties of regular cosmological models with vacuum dark energy, and of dark matter candidates with de Sitter interiors, including their observational signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. A. G. Riess et al., Astron. J. 117, 707 (1999)

    Article  ADS  Google Scholar 

  3. S. J. Perlmutter et al., Astrophys. J 517, 565 (1999)

    Article  ADS  Google Scholar 

  4. N. A. Bahcall et al., Science 284, 1481 (1999).

    Article  ADS  Google Scholar 

  5. L. Anderson et al., Mon. Not. R. Astron. Soc. 441, 24 (2014).

    Article  ADS  Google Scholar 

  6. E. B. Gliner and I. G. Dymnikova, Sov. Astron. Lett. 1, 93 (1975).

    ADS  Google Scholar 

  7. D. A. Tretyakova, Grav. Cosmol. 22, 339 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  8. P. S. Corasaniti et al., Phys. Rev. D 70, 083006 (2004).

    Article  ADS  Google Scholar 

  9. E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006).

    Article  ADS  Google Scholar 

  10. I. Dymnikova, Grav. Cosmol. 5 Suppl, 15 (1999)

  11. I. Dymnikova, Phys. Lett. B 472, 33 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  12. K. A. Bronnikov, A. Dobosz and I. Dymnikova, Class. Quant. Grav. 20, 3797 (2003).

    Article  ADS  Google Scholar 

  13. K. Bronnikov, I. Dymnikova and E. Galaktionov, Class. Quant. Grav. 29, 095025 (2012).

    Article  ADS  Google Scholar 

  14. L. Marochnik, Grav. Cosmol. 23, 201 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  15. K. Bamba, S. Capozziello, S. Nojiri, and S. D. Odintsov, Astrophys. Space Sci. 342, 155 (2012)

    Article  ADS  Google Scholar 

  16. A. B. Rivera and J. G. Farieta, arXiv:1605.01984 (2016)

    Google Scholar 

  17. A. Joyce, L. Lombriser, and F. Schmidt, Ann. Rev. Nucl. Part. Sci. 66, 95 (2016).

    Article  ADS  Google Scholar 

  18. V. Sahni, A. Shafiello, and A. A. Starobinsky, Astrophys. J. 793, L40 (2014).

    Article  ADS  Google Scholar 

  19. I. Dymnikova and E. Galaktionov, Phys. Lett. B 645, 358 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  20. I. Dymnikova, A. Dobosz, M. Filchenkov, and A. Gromov, Phys. Lett. B 506, 351 (2001).

    Article  ADS  Google Scholar 

  21. K. A. Bronnikov and I. Dymnikova, Class. Quantum Grav. 24, 5803 (2007).

    Article  ADS  Google Scholar 

  22. I. Dymnikova, Int. J. Mod. Phys. D 21, 1242007 (2012).

    Article  ADS  Google Scholar 

  23. I. Dymnikova, A. Dobosz, and B. Sołtysek, Gravi. Cosmol. 23, 28 (2017).

    Article  ADS  Google Scholar 

  24. I. Dymnikova and M. Korpusik, Phys. Lett. B 685, 12 (2010)

    Article  ADS  Google Scholar 

  25. I. Dymnikova and M. Korpusik, Entropy 13, 1967 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  26. I. Dymnikova, Int. J. Mod. Phys. D 5, 529 (1996).

    Article  ADS  Google Scholar 

  27. I. Dymnikova, Class. Quantum Grav. 19, 725 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  28. I. Dymnikova, in: Invisible universe, AIPConf.Proc. 1241, 361 (2010).

    Google Scholar 

  29. I. Dymnikova and E. Galaktionov, Cent. Eur. J. Phys. 9, 644 (2011).

    Google Scholar 

  30. I. Dymnikova, E. Galaktionov, and A. Poszwa, Grav. Cosmol. 17, 38 (2011).

    Article  ADS  Google Scholar 

  31. I. Dymnikova and M. Fil’chenkov, Adv. High Energy Phys. 2013, 746894 (2013).

    Article  Google Scholar 

  32. I. Dymnikova and M. Khlopov, Int. J. Mod. Phys. D 24, 1545002 (2015).

    Article  ADS  Google Scholar 

  33. I. Dymnikova, Universe 3, 20 (2017).

    Article  ADS  Google Scholar 

  34. L. D. Landau and E.M. Lifshitz, Classical theory of fields (Pergamon Press, 1975).

    MATH  Google Scholar 

  35. G. W. Gibbons, DAMTP-2003-19 (Cambridge University); hep-th/0302199 (2003).

    Google Scholar 

  36. I. Dymnikova, Gen. Rel. Grav. 24, 235 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  37. I. Dymnikova, Int. J. Mod. Phys. D 12, 1015 (2003).

    Article  ADS  Google Scholar 

  38. I. Dymnikova and B. Soltysek, Gen. Rel. Grav. 30, 1775 (1997).

    Article  ADS  Google Scholar 

  39. G.W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  40. T. Padmanabhan, Class. Quantum Grav. 19, 5387 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  41. G.’t Hooft, “Dimensional reduction in quantum gravity,” gr-qc/9310026.

  42. L. Susskind, J. Math. Phys. 36, 6377 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  43. R. Bousso, Class. Quantum Grav. 17, 997 (2000).

    Article  ADS  Google Scholar 

  44. A. G. Polnarev and M. Yu. Khlopov, Sov. Phys. Uspekhi 28, 213 (1985).

    Article  ADS  Google Scholar 

  45. J. H. McGibbon, Nature 329, 308 (1987).

    Article  ADS  Google Scholar 

  46. E. J. Copeland et al., Phys. Rev. D 49, 6410 (1994).

    Article  ADS  Google Scholar 

  47. B. J. Carr et al., Phys. Rev. D 50, 4853 (1994).

    Article  ADS  Google Scholar 

  48. L. Susskind, J. Math. Phys. 36, 6377 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  49. G. F. R. Ellis, arXiv: 1310.4771.

  50. Y. S. Myung, Y. W. Kim, and Y. J. Park, Phys. Lett. B 645, 393 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  51. D. Boyanovsky et al., Ann. Rev. of Nuclear and Particle Science 56, 441 (2006).

    Article  ADS  Google Scholar 

  52. O. E. Kalashev, G. I. Rubtsov, and S. V. Troitsky, Phys. Rev. D 80, 103006 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Dymnikova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dymnikova, I. DE-DM Unification Based on Space-Time Symmetry. Gravit. Cosmol. 24, 178–185 (2018). https://doi.org/10.1134/S020228931802007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S020228931802007X

Navigation