Stability of a d-Dimensional Thin-Shell Wormhole Surrounded by Quintessence

Abstract

We study the stability of different higher dimensional thin–shell wormholes (HDTSW) in general relativity with a cosmological constant. We show that a d-dimensional thin–shell wormhole surrounded by quintessence can have three different throat geometries: spherical, planar and hyperbolic. Unlike the spherical geometry, the planar and hyperbolic geometries allow different topologies that can be interpreted as higher-dimensional domain walls or branes connecting two universes. To construct these geometries, we use the cut-and-paste procedure by joining two identical vacuum space-time solutions. Properties such as the null energy condition and geodesics are also studied. A linear stability analysis around the static solutions is carried out, taking into account a more general HDTSW geometry than previous works, so it is possible to recover other well-known stability HDTSW conditions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    L. Flamm, Phys. Z. 17, 448 (1916).

    Google Scholar 

  2. 2.

    A. Einstein and N. Rosen, Phys. Rev. 48, 73–77 (1935).

    ADS  Article  Google Scholar 

  3. 3.

    R.W. Fuller and J. A. Wheeler, Phys. Rev. 128, 919–929 (1962).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).

    ADS  Article  Google Scholar 

  5. 5.

    M. Visser, Lorentzian Wormholes (AIP Press, New York, 1996).

    Google Scholar 

  6. 6.

    M. Morris, K. S. Thorne and U. Yurtsever, Phys.Rev. Lett. 61, 1446 (1988).

    ADS  Article  Google Scholar 

  7. 7.

    J. P. S. Lemos, F. S. N. Lobo, and S. Quinet de Oliveira, Phys. Rev. D 68, 064004 (2003).

    ADS  Article  Google Scholar 

  8. 8.

    M. Visser, Nuclear Physics B 328, 203 (1989).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    M. Visser, Phys. Rev. D 39, 3182 (1989).

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    W. Israel, Nuovo Cimento B 44, 1 (1966).

    ADS  Article  Google Scholar 

  11. 11.

    A. Papapetrou and A. Hamoui, Ann. Inst. Henri Poincare 9, 179 (1968).

    ADS  Google Scholar 

  12. 12.

    N. Sen, Ann. Phys. (Leipzig) 73, 365 (1924).

    ADS  Article  Google Scholar 

  13. 13.

    K. Lanczos, ibid. 74, 518 (1924).

    ADS  Google Scholar 

  14. 14.

    P. Musgrave and K. Lake, Class. Quantum Grav. 13, 1885 (1996).

    ADS  Article  Google Scholar 

  15. 15.

    E. Poisson and M. Visser, Phys. Rev. D 52, 7318 (1995).

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    K. A. Bronnikov, R. A. Konoplya, and A. Zhidenko, Phys. Rev. D 86, 024028 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    E. F. Eiroa and G. E. Romero, Gen. Relativ. Gravit. 36, 651 (2004).

    ADS  Article  Google Scholar 

  18. 18.

    F. S. N. Lobo and P. Crawford, Class. Quantum Grav. 21, 391 (2004).

    ADS  Article  Google Scholar 

  19. 19.

    M. Thibeault, C. Simeone, and E. F. Eiroa, Gen. Relativ. Gravit. 38, 1593 (2006).

    ADS  Article  Google Scholar 

  20. 20.

    E. F. Eiroa and C. Simeone, Phys. Rev. D 71, 127501 (2005).

    ADS  Article  Google Scholar 

  21. 21.

    M. G. Richarte and C. Simeone, Int. J.Mod. Phys. D 17, 1179 (2008).

    ADS  Article  Google Scholar 

  22. 22.

    G. Dotti, J. Oliva, and R. Troncoso, Phys. Rev. D 75, 024002 (2007).

    ADS  Article  Google Scholar 

  23. 23.

    A. A.Usmani, F. Rahaman, Saibal Ray, Sk. A. Rakib, Z. Hasan, and Peter K. F. Kuhfittig, arXiv: 1001.1415.

  24. 24.

    F. Rahaman, K. A. Rahman, Sk. A. Rakib, and Peter K. F. Kuhfittig, Gen. Rel. Grav. 42, 2901–2912 (2010).

    ADS  Article  Google Scholar 

  25. 25.

    M. G. Richarte and C. Simeone, Phys. Rev. D 80, 104033 (2009); Erratum 81, 109903 (2010).

    ADS  Article  Google Scholar 

  26. 26.

    J. P. S. Lemos and F. S. N. Lobo, Phys. Rev. D 69, 104007 (2004).

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    J. P. S. Lemos and F. S. N. Lobo, Phys. Rev. D 78, 044030 (2008).

    ADS  MathSciNet  Article  Google Scholar 

  28. 28.

    M. Sharif and M. Azam, JCAP 1304, 023 (2013).

    ADS  Article  Google Scholar 

  29. 29.

    S. Habib Mazharimousavi, M. Halilsoy, and Z. Amirabi, Phys. Rev. D 89, 084003 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    M. R. Setare and A. Sepehri, JHEP 1503, 079 (2015).

    ADS  Article  Google Scholar 

  31. 31.

    Mubasher Jamil, Peter K. F. Kuhfittig, Farook Rahaman, and Sk. A. Rakib, Eur. Phys. J. C 67, 513 (2010).

    ADS  Article  Google Scholar 

  32. 32.

    Cecilia Bejarano and Ernesto F. Eiroa, Phys. Rev. D 84, 064043 (2011).

    ADS  Article  Google Scholar 

  33. 33.

    Ernesto F. Eiroa, Phys. Rev. D 80, 044033 (2009).

    ADS  Article  Google Scholar 

  34. 34.

    F. S. N. Lobo, Phys. Rev. D 71, 084011 (2005).

    ADS  MathSciNet  Article  Google Scholar 

  35. 35.

    S. Sushkov, Phys. Rev. D 71, 043520 (2005).

    ADS  Article  Google Scholar 

  36. 36.

    T. Multamaki, M. Manera, and E. Gaztanaga, Phys. Rev. D 69, 023004 (2004).

    ADS  Article  Google Scholar 

  37. 37.

    Peter K. F. Kuhfittig, Acta Phys. Polon. B 41, 2017–2019 (2010).

    Google Scholar 

  38. 38.

    N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys Lett. B 429, 263 (1998).

    ADS  Article  Google Scholar 

  39. 39.

    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys Lett. B 436, 257 (1998).

    ADS  Article  Google Scholar 

  40. 40.

    L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).

    ADS  MathSciNet  Article  Google Scholar 

  41. 41.

    L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).

    ADS  MathSciNet  Article  Google Scholar 

  42. 42.

    R. C. Myers and M. J. Perry, Ann. Phys. 172, 304 (1986).

    ADS  Article  Google Scholar 

  43. 43.

    V.N. Melnikov, in Proc. 8thMarcel GrossmanMeeting (Jerusalem, Israel, 1997).

    Google Scholar 

  44. 44.

    U. Kasper, M. Rainer, and A. Zhuk, Gen. Rel. Grav. 29, 1123 (1997).

    ADS  Article  Google Scholar 

  45. 45.

    K. A. Bronnikov and V. N. Melnikov, Grav. Cosmol. 1, 155 (1995).

    ADS  Google Scholar 

  46. 46.

    S. E. P. Bergliaffa, Mod. Phys. Let. A 15, 531 (2000).

    ADS  Article  Google Scholar 

  47. 47.

    H. Kim, S. Moon, and J. H. Yee, JHEP 0202, 046 (2002).

    ADS  Article  Google Scholar 

  48. 48.

    J. Ponce de Leon and N. Cruz, Gen. Rel. Grav. 32, 1207 (2000).

    ADS  Article  Google Scholar 

  49. 49.

    P. Gonzales-Diaz, Phys. Lett. B 247, 251 (1990).

    ADS  Article  Google Scholar 

  50. 50.

    X. Jianjun and J. Sicong, Mod. Phys. Lett. 6, 251 (1990).

    Google Scholar 

  51. 51.

    M. Cataldo, P. Salgado, and P. Minning, Phys. Rev. D 66, 124008 (2002).

    ADS  MathSciNet  Article  Google Scholar 

  52. 52.

    Mauricio Cataldo, Fernanda Aróstica, and Sebastian Bahamonde, Eur. Phys. J. C 73, 2517 (2013).

    ADS  Article  Google Scholar 

  53. 53.

    S. Kar and D. Sahdev, Phys. Rev. D 53, 722 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  54. 54.

    M. K. Zangeneh, F. S. N. Lobo, and N. Riazi, arXiv: 1406.5703.

  55. 55.

    A. DeBenedictis and D. Das, Nucl. Phys. B 653, 279–304 (2003).

    ADS  Article  Google Scholar 

  56. 56.

    M. H. Dehghani and S. H. Hendi, Gen. Rel. Grav. 41, 1853 (2009).

    ADS  Article  Google Scholar 

  57. 57.

    B. Bhawal and S. Kar, Phys. Rev. D 46, 2464 (1992).

    ADS  MathSciNet  Article  Google Scholar 

  58. 58.

    G. A. S. Dias and J. P. S. Lemos, Phys. Rev. D 82, 084023 (2010).

    ADS  Article  Google Scholar 

  59. 59.

    F. Rahaman, M. Kalam, and S. Chakraborty, Gen. Rel. Grav. 38, 1687-1695 (2006).

    ADS  Article  Google Scholar 

  60. 60.

    S. H. Mazharimousavi, M. Halilsoy, and Z. Amirabi, Phys. Lett. A 375, 231 (2011).

    ADS  MathSciNet  Article  Google Scholar 

  61. 61.

    S. H. Mazharimousavi, M. Halilsoy, and Z. Amirabi, Class. Quantum Grav. 28, 025004 (2011).

    ADS  Article  Google Scholar 

  62. 62.

    Ernesto F. Eiroa and Claudio Simeone, Int. J. Mod. Phys. D 21, 1250033 (2012).

    ADS  Article  Google Scholar 

  63. 63.

    Goncalo A. S. Dias and JoséP. S. Lemos, Phys. Rev. D 82, 084023 (2010).

    ADS  Article  Google Scholar 

  64. 64.

    M. H. Dehghani and M. R. Mehdizadeh, Phys. Rev. D 85, 024024 (2012).

    ADS  Article  Google Scholar 

  65. 65.

    Songbai Chen, Bin Wang, and Rukeng Su, Phys. Rev. D 77, 124011, (2008).

    ADS  MathSciNet  Article  Google Scholar 

  66. 66.

    V. V. Kiselev, Class. Quantum Grav. 20, 1187 (2003).

    ADS  Article  Google Scholar 

  67. 67.

    S. Fernando, Gen. Rel. Grav. 44, 1857 (2012).

    ADS  Article  Google Scholar 

  68. 68.

    Y. Zhang and Y. X. Gui, Class. Quantum Grav. 23, 6141 (2006).

    ADS  Article  Google Scholar 

  69. 69.

    A. Younas, S. Hussain, M. Jamil and S. Bahamonde, Phys. Rev. D 92, 084042 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  70. 70.

    M. Azreg-Ainou, S. Bahamonde, and M. Jamil, Eur. Phys. J. C 77, 414 (2017).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ayan Banerjee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Jusufi, K. & Bahamonde, S. Stability of a d-Dimensional Thin-Shell Wormhole Surrounded by Quintessence. Gravit. Cosmol. 24, 71–79 (2018). https://doi.org/10.1134/S0202289318010024

Download citation