Gravitation and Cosmology

, Volume 23, Issue 4, pp 305–310 | Cite as

Does the cosmological principle exist in the rotating Universe?

  • L. M. ChechinEmail author


We find the probability density distribution of torque orientations in the Universe for the entire period of its evolution. It is shown that in the early Universe the orientation of its spin is random, and the cosmological principle is satisfied. This result is naturally consistent with the CMBisotropy. In the modern Universe the rotation axis direction becomes anisotropic, and the cosmological principle, strictly speaking, is not satisfied. This is confirmed by the large-scale anisotropy in the distribution of space objects and by the torque alignment direction. But since the value of the angular velocity of our Universe is \(\omega_{U_{n}}\sim10^{-19}\;\text{Hz}\), finding of such rotation and its influence on the natural processes is extremely difficult. So today dominates the view that the Universe is isotropic, and the cosmological principle is satisfied in it.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. C. Su and M. C. Chu, Astroph. J. 703, 354 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    G. G. Byrd, A. D. Chernin, and M. J. Valtonen, Cosmology: Foundations and Frontiers (M., URSS, 2007).Google Scholar
  3. 3.
    K. Gödel, Rev.Mod. Phys. 21, 447 (1949).ADSCrossRefGoogle Scholar
  4. 4.
    S. Hawking, MNRAS 142, 129 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    J. D. Barrow, R. Juszkiewicz, and D. Sonoda, MNRAS 213, 917 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    J.D. Barrowand C.G. Tsagas, Class. Quantum Grav. 21, 1773 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    F. Conrady and L. Freidel, Phys. Rev. D. 78, 104023 (2008).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    L. Freidel and E. R. Livine, Class.Quantum Grav. 23, 2021 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    L. Freidel and D. Louapre, Class. Quantum Grav. 21, 5685 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    K. Noui and A. Perez, Class. Quantum Grav. 22, 4489 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    A. K. Gorbatzevich, Quantum Mechanics in General Relativity (Minsk, Universitetskoye, 1985, in Russian).Google Scholar
  12. 12.
    L. M. Chechin, Russ. Phys. J. 35, 117 (1992).CrossRefGoogle Scholar
  13. 13.
    I. P. Bazarov, E. V. Gevorkyan, and P. N. Nikolayev, Non-Equilibrium Thermodynamics and Physical Kinetics (M., MSU, 1989, in Russian).Google Scholar
  14. 14.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics (M., GITTL, 1949, in Russian).zbMATHGoogle Scholar
  15. 15.
    O. Lahav, NATO Science Series C: Mathematical and Physical Sciences 565, 131 (2001).Google Scholar
  16. 16.
    P. Fleury, PhD thesis, arXiv: 1511.03702.Google Scholar
  17. 17.
    R. Maartens, G. Ellis, and W. Stoeger, Astron. Astroph. 309, L7 (1996).ADSGoogle Scholar
  18. 18.
    D. Saadeh, S. M. Feeney, A. Pontzen, H. V. Peiris, and J. D. McEwen, Phys. Rev. Lett. 11, 131302 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    L. M. Chechin, Astron. Rep. 60, 535 (2016).ADSCrossRefGoogle Scholar
  20. 20.
    F. Gursey, Phys. Rev. 97, 1712 (1955).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Papapetrou, Proc. Roy. Soc. Lond. A 209, 248 (1951).ADSCrossRefGoogle Scholar
  22. 22.
    V. A. Fock, The Theory of Space, Time and Gravitation (Pergamon Press, Oxford, 1964).zbMATHGoogle Scholar
  23. 23.
    Ya. B. Zel’dovich and I. D. Novikov, Structure and Evolution of the Universe (M., Nauka, 1975).Google Scholar
  24. 24.
    E. V. Linder and A. Jenkins, astro-ph/0305286.Google Scholar
  25. 25.
    L. Infeld and J. Plebanski, Motion and Relativity (Pergamon Press, New York, 1960).zbMATHGoogle Scholar
  26. 26.
    A. D. Linde, Particle Physics and Inflationary Cosmology (Harwood Academic Publishers, Chur, Switzerland, 1990).CrossRefGoogle Scholar
  27. 27.
    L. M. Chechin, Astron. Rep. 54, 719 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    P. Birch, Nature 98, 451 (1982).ADSCrossRefGoogle Scholar
  29. 29.
    Planck 2015 results. XIII. Cosmological parameters, arXiv: 1502.01589.Google Scholar
  30. 30.
    R. K. Barrett and C. A. Clarkson, Class. Quantum Grav. 17, 5047 (2000).ADSCrossRefGoogle Scholar
  31. 31.
    R. Maartens, Phil. Trans. R. Soc. A 369, 5115 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Fesenkov Astrophysical Institute, National Center for Space Research and TechnologyAerospace Committee of MDSIAlmatyKazakhstan
  2. 2.Al-Farabi National UniversityAlmatyKazakhstan

Personalised recommendations