Skip to main content
Log in

Calculating luminosity distance versus redshift in FLRW cosmology via homotopy perturbation method

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We propose an efficient analytical method for estimating the luminosity distance in a homogenous Friedmann-Lemaître-Robertson-Walker (FLRW) model of the Universe. This method is based on the homotopy perturbation method (HPM) which has a high accuracy in many nonlinear problems and can be easily implemented. For an analytical calculation of the luminosity distance, we suggest to proceed not from computation of the integral which determines it but from the solution of a certain differential equation with the corresponding initial conditions. Solving this equation by means of HPM, we obtain approximate analytical expressions for the luminosity distance as a function of the redshift for two different types of homotopy. A possible extension of this method to other cosmological models is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Riess et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  3. N. Suzuki, D. Rubin, C. Lidman et al., Astrophys. J. 746, 85 (2012).

    Article  ADS  Google Scholar 

  4. De-Zi Liu, Cong Ma, Tong-Jie Zhang, and Zhiliang Yang, Mon. Not. R. Astron. Soc. 412, 2685 (2011).

    Article  ADS  Google Scholar 

  5. Céline Cattoën and Matt Visser, Class. Quantum Grav. 24, 5985 (2007).

    Article  ADS  Google Scholar 

  6. Ue-Li Pen, Astrophys. J. Suppl. 120, 49–50 (1999).

    Article  ADS  Google Scholar 

  7. A. Meszaros and J. Ripa, Astron. Astrophys. 573, A54 (2015).

    Article  ADS  Google Scholar 

  8. Hao Wei, Xiao-Peng Yan, and Ya-Nan Zhou, JCAP 1401, 045 (2014).

    Article  ADS  Google Scholar 

  9. J.-H. He, Comput.Meth. Appl.Mech. Eng. 178, 257 (1999).

    Article  ADS  Google Scholar 

  10. J.-H. He, Int. J. Nonlin. Mech. 35 (1), 37 (2000).

    Article  Google Scholar 

  11. J.-H. He, Appl. Math. Comput. 135, 73 (2003).

    MathSciNet  Google Scholar 

  12. J.-H. He, Indian J. Phys. 88 (2), 193 (2014).

    Article  ADS  Google Scholar 

  13. J.-H. He, Abstract and Applied Analysis, 2012, Article ID 916793, 130 pages. DOI:10.1155/2012/916793

    Google Scholar 

  14. L. Cveticanin, Chaos Soliton Fract. 30 (5), 1221 (2006).

    Article  ADS  Google Scholar 

  15. M. Zare, O. Jalili and M. Delshadmanesh, Indian. J. Phys. 86 (10), 855 (2012).

    Article  ADS  Google Scholar 

  16. V. Shchigolev, Universal J. Appl. Math. 2 (2), 99 (2014).

    Google Scholar 

  17. F. Rahaman, S. Ray, A. Aziz, S. R. Chowdhury, and D. Deb, arXiv: 1504.05838.

  18. S. Weinberg, Gravitation and Cosmology: Principles and Applications of The General Theory of Relativity (JohnWiley, New York, 1972).

    Google Scholar 

  19. T. Wickramasinghe and T. N. Ukwatta, Mon. Not. R. Astron. Soc. 406, 548 (2010).

    Article  ADS  Google Scholar 

  20. T. Chiba and T. Nakamura, Prog. Theor. Phys. 100, 1077 (1998).

    Article  ADS  Google Scholar 

  21. M. Visser, Class. Quantum Grav. 21, 2603 (2004).

    Article  ADS  Google Scholar 

  22. M. Visser, Gen. Rel. Grav. 37, 1541 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Shchigolev.

Additional information

Plenary talk given at the International Schoool-Seminar on Theoretical and Observational Cosmology GRACOS-2016, September 19–30, 2016, Ulyanovsk, Russia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchigolev, V.K. Calculating luminosity distance versus redshift in FLRW cosmology via homotopy perturbation method. Gravit. Cosmol. 23, 142–148 (2017). https://doi.org/10.1134/S0202289317020098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289317020098

Navigation