Skip to main content
Log in

Inflation and CMB anisotropy from quantum metric fluctuations

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We propose a model of cosmological evolution of the early and late Universe which is consistent with observational data and naturally explains the origin of inflation and dark energy. We show that the de Sitter accelerated expansion of the FLRW space with no matter fields (hereinafter, empty space) is its natural state, and the model does not require either a scalar field or cosmological constant or any other hypotheses. This is due to the fact that the De Sitter State is an exact solution of the rigorous mathematically consistent equations of one-loop quantum gravity for the empty FLRW space that are finite off the mass shell. Space without matter fields is not empty as it always has the natural quantum fluctuations of the metric, i.e. gravitons. Therefore, the empty (in this sense) space is filled with gravitons, which have the backreaction effect on its evolution over time forming a self-consistent de Sitter instanton leading to the exponentially accelerated expansion of the Universe. At the start and the end of cosmological evolution, the Universe is assumed to be empty, and this fact explains the origin of inflation and dark energy. The Universe starts and ends with de Sitter expansion but the evolutionary process runs in these cases in opposite directions. It leads to the prediction that the signs of the parameter 1 + w should be opposite in the two cases, which is consistent with observations. Fluctuations of the number of gravitons lead to fluctuations of their energy density which in turn leads to the observed CMB temperature anisotropy of the order of ∼10−5 and CMB polarization. Within this scenario, it is not a hypothetical scalar field that generates inflation and relic gravitational waves but on the contrary, gravitational waves (gravitons) generate inflation, CMB anisotropy and dark energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. B. Gliner, Sov. Phys. JETP, 22, 378 (1966).

    ADS  Google Scholar 

  2. Ya. B. Zeldovich, Sov. Phys.—Uspekhi 11, 381 (1968).

    Article  ADS  Google Scholar 

  3. A. Starobinsky, JETP Lett. 30, 682 (1979).

    ADS  Google Scholar 

  4. G. Hinshaw et al., arXiv: 1212.5226.

  5. D. Kazanas, Astrophys. J. 241, L59 (1980).

    Article  ADS  Google Scholar 

  6. K. Sato, Mon. Not. Roy. Astron. Soc. 195, 467 (1981).

    Article  ADS  Google Scholar 

  7. L. Marochnik, D. Usikov, and G. Vereshkov, J. Mod. Phys. 4, 48 (2013); arXiv:0811.4484, 2008

    Article  Google Scholar 

  8. G. Vereshkov and L. Marochnik, J. Mod. Phys. 4, 285 (2013); arXiv: 1108.4256.

    Article  Google Scholar 

  9. L. Marochnik, D. Usikov, and G. Vereshkov, Found. Phys. 38, 546 (2008); arXiv: 0709.2537, 2007

    Article  ADS  MATH  Google Scholar 

  10. L. Marochnik, Grav. Cosmol. 19, 178 (2013); arXiv: 1306.6172, 2013

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. G.’ t Hooft and M. Veltman, Ann. Inst. Henry Poincare 20, 69 (1974).

    ADS  Google Scholar 

  12. P. J. E. Peebles and Bharat Ratra, Rev. Mod. Phys. 75, 559 (2003); astro-ph/0207347.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. S. Weinberg, Cosmology (Oxford, 2008, Section 4.4.2).

    MATH  Google Scholar 

  14. L. Marochnik, N. Pelikhov, and G. Vereshkov, Astroph. Space Sci. 34, 265 (1975).

    Article  ADS  Google Scholar 

  15. L. R. W. Abramo, R. H. Brandenberger, and V. F. Mukhanov, Phys. Rev. D 56, 3248 (1997).

    Article  ADS  Google Scholar 

  16. A. Starobinsky, Phys. Lett. B 91, 99 (1980).

    Article  ADS  Google Scholar 

  17. Ya.B. Zeldovich and A. Starobinsky, Sov. Phys. JETP 34, 1159 (1972).

    ADS  Google Scholar 

  18. Ya. B. Zeldovich, Sov. Phys.—Uspekhi 24, 216 (1981).

    Article  ADS  Google Scholar 

  19. M. Kamionkowski, A. Kosowsky, and A. Stebbins, Phys. Rev. D 55, 7368 (1997); astro-ph/9611125.

    Article  ADS  Google Scholar 

  20. E. Komatsu et al., Astrophys. J. Suppl. 180, 330 (2009); arXiv: 0803.0547.

    Article  ADS  Google Scholar 

  21. P. A. R. Ade et al., arXiv: 1303.5076, 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Marochnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marochnik, L., Usikov, D. Inflation and CMB anisotropy from quantum metric fluctuations. Gravit. Cosmol. 21, 118–122 (2015). https://doi.org/10.1134/S0202289315020061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289315020061

Keywords

Navigation