Skip to main content
Log in

LRS Bianchi Type II tilted barotropic fluid cosmological model with heat conduction in general relativity

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

A tilted cosmological model is studied for a barotropic fluid distribution with heat conduction in the framework of a compact Bianchi Type II space-time. To get a deterministic solution in terms of cosmic time t, we have used the supplementary condition R = S n between the metric potentials R and S, where n is a constant. The shear tensor σ ij for the tilted model satisfies the trace-free condition σ ij v j = 0, where v i is the fluid velocity vector. In a special case, the model becomes non-tilted. The heat conduction vector q i also satisfies the trace-free condition q i v i = 0. The spatial volume increases as time increases, and the model represents an inflationary scenario. The model for a barotropic fluid distribution represents decelerating and accelerating phases of the universe, matching with the astronomical observations. Anisotropy is maintained throughout, but in a special case the model isotropizes. The particle horizon and entropy are discussed. We have also discussed the stiff fluid case with physical and geometrical aspects of the models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Asseo and H. Sol, Phys. Rep. 6, 148 (1987).

    Google Scholar 

  2. D. Lorentz, Phys. Lett. A 79, 19 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  3. J. Hajj-Boutros, J. Math. Phys. 27, 1592 (1986).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. J. Hajj_Boutros, Int. J. Theor. Phys. 28, 487 (1989).

    Article  MATH  Google Scholar 

  5. T. Singh and A. K. Agrawal, Int. J. Theor. Phys. 31, 553 (1992).

    Article  MathSciNet  Google Scholar 

  6. S. R. Roy and S. K. Banerjee, Class. Quant. Gravity 11, 1943 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  7. R. Bali, R. D. Upadhaya and K. N. Singh, Ind. J. Pure and Appl. Math. 34, 79 (2003).

    MATH  MathSciNet  Google Scholar 

  8. N. Kaiser, Astrophysical J. 366, 388 (1991).

    Article  ADS  Google Scholar 

  9. D. Lynden-Bell et al., Astrophysical J. 326, 19 (1988).

    Article  ADS  Google Scholar 

  10. A. A. Coley, Astrophysical J. 318, 487 (1987).

    Article  ADS  Google Scholar 

  11. A. A. Coley and B. O. J. Tupper, J. Math. Phys. 27, 406 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  12. P. Schneider, J. Ehlers, and E. E. Falco, Gravitational Lenses (Berlin, Springer-Verlag, 1992).

    Google Scholar 

  13. S. Matarrese, O. Pantano, and D. Saez, Phys. Rev. D 47, 1311 (1994).

    Article  ADS  Google Scholar 

  14. J. M. Bradley and E. Sviestins, Gen. Relativ. Gravit. 16, 1119 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. R. King and G. F.R. Ellis, Comm. Math. Phys. 31, 209 (1973).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. G. F. R. Ellis and A. R. King, Comm. Math. Phys. 38, 119 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Mukherjee, J. Astrophys. and Astronomy 4, 295 (1983).

    Article  ADS  Google Scholar 

  18. M. Novello and M. J. Reboucas, Astrophys. J. 225, 719 (1978).

    Article  ADS  Google Scholar 

  19. S. R. Roy and S. K. Banerjee, Astrophys and Space-Science 150, 213 (1988).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. A. A. Coley and B.O. J. Tupper, Phys. Lett. A 95, 357 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Banerjee and N.O. Santos, Gen. Relativ. and Grav. 18, 1251 (1986).

    Article  ADS  MATH  Google Scholar 

  22. A. A. Coley, Gen. Relativ. Grav. 22, 3 (1990).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. R. Bali and K. Sharma, Pramana J. Phys. 58, 457 (2002).

    Article  ADS  Google Scholar 

  24. R. Bali and P. Kumawat, Grav. and Cosmology 14, 347 (2008).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. R. Bali and P. Kumawat, Braz. J. Phys. 40, 1 (2010).

    Article  Google Scholar 

  26. G. F. R. Ellis, Gen. Relativity and Cosmology, Ed. by R. K. Sachs (Academic Press, New York, 1971), p. 116.

  27. M. A. H. MacCallum, Comm. Math. Phys. 20, 57 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  28. A. G. Riess et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  29. A. G. Riess, L. G. Strologer, J. Tonry, et al., Type I supernovae discoveries at z > 1 from Hubble space telescope, The Astrophysical Journal 607, 665 (2004).

    Article  ADS  Google Scholar 

  30. S. Perlmutter et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  31. E. W. Kolb and M. S. Turner, The Early Universe (Addision-Wesley, Reading, 1990), p. 65.

    MATH  Google Scholar 

  32. Y. S. Myung, Phys. Lett. B 671, 216 (2009).

    Article  ADS  Google Scholar 

  33. M. P. Jr. Ryan and L. C. Shepley, Homogeneous Relativistic Cosmologies (Princeton University Press, Princeton, 1975).

    Google Scholar 

  34. D. Kramer, H. Stephani, M. MacCallum, and E. Herlt, Exact solutions of Einstein’s field equations (Cambridge University Press, Cambridge, 1980).

    MATH  Google Scholar 

  35. Y. Fujiwara, H. Ishihara, and H. Kodama, arXiv:grqc/9301019v1 (1993).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bali, R., Kumawat, P. LRS Bianchi Type II tilted barotropic fluid cosmological model with heat conduction in general relativity. Gravit. Cosmol. 21, 77–82 (2015). https://doi.org/10.1134/S0202289315010028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289315010028

Keywords

Navigation