Advertisement

Gravitation and Cosmology

, Volume 20, Issue 3, pp 214–219 | Cite as

Supernovae and gamma-ray bursts in the induced gravitational collapse paradigm

  • Remo Ruffini
Article
  • 47 Downloads

Abstract

I review recent progress in the understanding of long, energetic (1052–1054 erg) gamma-ray bursts (GRBs) associated to supernovae (SN) Ib/c. This occurrence is explained within the Induced Gravitational Collapse (IGC) paradigm, following the sequence: 1) an initial binary system consists in a compact Iron-Carbon-Oxygen (FeCO) core and a neutron star (NS); 2) the FeCO core explodes, giving origin to a SN, and part of the SN ejecta accretes onto the NS which reaches its criticalmass and collapses to a black hole (BH) giving rise to a long GRB; 3) a new NS (ν-NS) is generated by the SN as a remnant. Observational consequences of this scenario are outlined.

Keywords

Black Hole Neutron Star Isotropic Energy Progenitor Star Steep Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.B.E. Lovelace, J. M. Sutton, and H. D. Craft, IAU Circ 2113, 1 (1968).ADSGoogle Scholar
  2. 2.
    A. Finzi and R. A. Wolf, ApJ 153, 865 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    H. Gursky and R. Ruffini, eds., Neutron stars, black holes and binary X-ray sources; Proceedings of the Annual Meeting, San Francisco, Calif., February 28, 1974, vol. 48 of Astrophysics and Space Science Library (1975).Google Scholar
  4. 4.
    T. Damour and R. Ruffini, Physical Review Letters 35, 463 (1975).ADSCrossRefGoogle Scholar
  5. 5.
    D. Christodoulou and R. Ruffini, Phys. Rev. D 4, 3552 (1971).ADSCrossRefGoogle Scholar
  6. 6.
    G. S. Bisnovatyi-Kogan, V. S. Imshennik, D. K. Nadyozhin, and V. M. Chechetkin, Astrophys. Space Sci. 35, 23 (1975).ADSCrossRefGoogle Scholar
  7. 7.
    E. Pian et al., ApJ 536, 778 (2000), arXiv: astro-ph/9910235.ADSCrossRefGoogle Scholar
  8. 8.
    T. J. Galama et al., Nature 395, 670 (1998), arXiv: astro-ph/9806175.ADSCrossRefGoogle Scholar
  9. 9.
    J. Hjorth and J. S. Bloom, ArXiv e-prints (2011), 1104.2274.Google Scholar
  10. 10.
    K. Nomoto et al., Phys. Rep 163, 13 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    K. Nomoto et al., Nature 371, 227 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    K. Iwamoto et al., ApJ 437, L115 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    R. Ruffini et al., in The Eleventh Marcel Grossmann Meeting On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, edited by H. Kleinert, R. T. Jantzen, and R. Ruffini (2008), pp. 368–505, 0804.2837.Google Scholar
  14. 14.
    J. A. Rueda and R. Ruffini, ApJ 758, L7 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    L. Izzo, J. A. Rueda, and R. Ruffini, A& A 548, L5 (2012a), 1206.2887.ADSCrossRefGoogle Scholar
  16. 16.
    A. Damineli et al., ApJL 528, L101 (2000), astro-ph/9912387.ADSCrossRefGoogle Scholar
  17. 17.
    E. Schreier et al., ApJ 172, L79 (1972).ADSCrossRefGoogle Scholar
  18. 18.
    R. E. Wilson, ApJ 174, L27 (1972).ADSCrossRefGoogle Scholar
  19. 19.
    H. Tananbaum et al., ApJ 174, L143 (1972).ADSCrossRefGoogle Scholar
  20. 20.
    R.W. Leach and R. Ruffini, ApJ 180, L15 (1973).ADSCrossRefGoogle Scholar
  21. 21.
    K. Davidson and J. P. Ostriker, ApJ 179, 585 (1973).ADSCrossRefGoogle Scholar
  22. 22.
    M. L. Rawls et al., ApJ 730, 25 (2011), 1101.2465.ADSCrossRefGoogle Scholar
  23. 23.
    C. L. Fryer, S. E. Woosley, and D. H. Hartmann, ApJ 526, 152 (1999), astro-ph/9904122.ADSCrossRefGoogle Scholar
  24. 24.
    L. Izzo et al., A& A 543, A10 (2012b), 1202.4374.ADSCrossRefGoogle Scholar
  25. 25.
    L. Izzo et al., A& A 543, A10 (2012c), 1202.4374.ADSCrossRefGoogle Scholar
  26. 26.
    A. V. Penacchioni et al., A& A 538, A58 (2012), 1112.2970.ADSCrossRefGoogle Scholar
  27. 27.
    A. V. Penacchioni et al., A& A 551, A133 (2013), 1301.6014.ADSCrossRefGoogle Scholar
  28. 28.
    R. Ruffini et al., ArXiv: 1311.7432.Google Scholar
  29. 29.
    R. Belvedere et al., Nuclear Physics A 883, 1 (2012), 1202.6500.ADSCrossRefGoogle Scholar
  30. 30.
    R. Ruffini, G. Vereshchagin, and S.-S. Xue, Phys. Rep. 487, 1 (2010), 0910.0974.ADSCrossRefGoogle Scholar
  31. 31.
    K. L. Page et al., MNRAS 416, 2078 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    D. Arnett, Book Review: Supernovae and nucleosynthesis: an investigation of the history of matter, from the big bang to the present, Space Science Reviews 78, 559 (1996).ADSGoogle Scholar
  33. 33.
    Z. Cano et al., MNRAS 413, 669 (2011), 1012.1466.ADSCrossRefGoogle Scholar
  34. 34.
    G. B. Pisani et al., A& A 552, L5 (2013), 1304.1764.ADSCrossRefGoogle Scholar
  35. 35.
    D. Xu et al., GRB Coordinates Network 14478, 1 (2013a).Google Scholar
  36. 36.
    H. Flores et al., GRB Coordinates Network 14491, 1 (2013).MathSciNetGoogle Scholar
  37. 37.
    A. de Ugarte Postigo et al., GCN 14646, 1 (2013).Google Scholar
  38. 38.
    A. J. Levan et al., GRB Coordinates Network 14686, 1 (2013).MathSciNetGoogle Scholar
  39. 39.
    A. M. Watson et al., GRB Coordinates Network 14666, 1 (2013).Google Scholar
  40. 40.
    D. Xu et al., GRB Coordinates Network 14597, 1 (2013b).Google Scholar
  41. 41.
    J.S. Bloom, D. A. Perley, and H.W. Chen, GCNCirc. 5826 (2006).Google Scholar
  42. 42.
    C. Kouveliotou et al., ApJl 779, L1 (2013), 1311.5245.ADSCrossRefGoogle Scholar
  43. 43.
    D. A. Perley et al., ApJ 781, 37 (2014), 1307.4401.ADSCrossRefGoogle Scholar
  44. 44.
    E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Reviews of Modern Physics 29, 547 (1957).ADSCrossRefGoogle Scholar
  45. 45.
    L.-X. Li and B. Paczyński, ApJl 507, L59 (1998), astro-ph/9807272.ADSCrossRefGoogle Scholar
  46. 46.
    H.-T. Janka, T. Eberl, M. Ruffert, and C. L. Fryer, ApJl 527, L39 (1999), astro-ph/9908290.ADSCrossRefGoogle Scholar
  47. 47.
    S. Rosswog, R. Speith, and G. A. Wynn, MNRAS 351, 1121 (2004), astro-ph/0403500.ADSCrossRefGoogle Scholar
  48. 48.
    R. Oechslin, H.-T. Janka, and A. Marek, A& A 467, 395 (2007), astro-ph/0611047.ADSCrossRefGoogle Scholar
  49. 49.
    S. Goriely, A. Bauswein, and H.-T. Janka, ApJl 738, L32 (2011), 1107.0899.ADSCrossRefGoogle Scholar
  50. 50.
    T. Piran, O. Korobkin, and S. Rosswog, arXiv: 1401.2166 (2014), 1401.2166.Google Scholar
  51. 51.
    W. D. Arnett, ApJ 253, 785 (1982).ADSCrossRefGoogle Scholar
  52. 52.
    B. D. Metzger et al., MNRAS 406, 2650 (2010), 1001.5029.ADSCrossRefGoogle Scholar
  53. 53.
    S. E. Woosley, ApJ 405, 273 (1993).ADSCrossRefGoogle Scholar
  54. 54.
    A. I. MacFadyen and S. E. Woosley, ApJ 524, 262 (1999), astro-ph/9810274.ADSCrossRefGoogle Scholar
  55. 55.
    S. E. Woosley and J. S. Bloom, ARA& A 44, 507 (2006), astro-ph/0609142.ADSCrossRefGoogle Scholar
  56. 56.
    R. Sari, T. Piran, and R. Narayan, ApJl 497, L17 (1998), astro-ph/9712005.ADSCrossRefGoogle Scholar
  57. 57.
    T. Piran, Rev. Mod. Phys. 76, 1143 (2005).ADSCrossRefGoogle Scholar
  58. 58.
    P. Meszaros, Reports on Progress in Physics 69, 2259 (2006), URL http://stacks.iop.org/0034-4885/69/i=8/a=R01.ADSCrossRefGoogle Scholar
  59. 59.
    N. Gehrels, E. Ramirez-Ruiz, and D. B. Fox, ARA& A 47, 567 (2009), 0909.1531.ADSCrossRefGoogle Scholar
  60. 60.
    R. Ruffini, talk presented at the “27th Texas Symposium on Relativistic Astrophysics”, Dallas, TX (USA), December 8–13 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Dipatirmento di FisicaSapienza University of Rome and ICRARomeItaly
  2. 2.ICRANetPescaraItaly
  3. 3.Université de Nice Sophie Antipolis, CEDEX 2NiceFrance
  4. 4.ICRANet-Rio, CBPFRio de Janeiro, RJBrazil

Personalised recommendations