Advertisement

Gravitation and Cosmology

, Volume 20, Issue 3, pp 171–175 | Cite as

Cylindrically and axially symmetric wormholes. Throats in vacuum?

  • K. A. Bronnikov
  • M. V. Skvortsova
Article

Abstract

This brief review discusses the existence conditions of wormhole throats and wormholes as global configurations in general relativity under the assumptions of cylindrical and axial symmetries. It is pointed out, in particular, that wormhole throats can exist in static, cylindrically symmetric space-times under slightly different conditions as compared with spherical symmetry. In cylindrically symmetric spacetime with rotation, throats can exist in the presence of ordinary matter or even in vacuum; however, there are substantial difficulties in obtaining asymptotically flat wormhole configurations without exotic matter: such examples are yet to be found. Some features of interest are discussed in static, axially symmetric configurations, including wormholes with singular rings and wrongly seeming regular wormhole throats in the Zipoy-Voorhees vacuum space-time.

Keywords

Black Hole Cosmic String Null Energy Condition Exotic Matter Rotate Reference Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev. Lett. 61, 1446 (1988).ADSCrossRefGoogle Scholar
  2. 2.
    M. Visser, Lorentzian Wormholes: from Einstein to Hawking (AIP, Woodbury, 1995).Google Scholar
  3. 3.
    K. A. Bronnikov and S. G. Rubin, Black Holes, Cosmology and Extra Dimensions (World Scientific, 2012).CrossRefGoogle Scholar
  4. 4.
    A. Doroshkevich, J. Hansen, I. Novikov, and A. Shatskiy, Int. J. Mod. Phys. D 18, 1665 (2009), arXiv: 0812.0702.ADSCrossRefMATHGoogle Scholar
  5. 5.
    T. Harko, Z. Kovacs, and F. S. N. Lobo, Phys. Rev. D 79, 064001 (2009); arXiv: 0901.3926.ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Kirillov and E. P. Savelova, Grav. Cosmol. 19, 92 (2013).ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    E. P. Savelova, Grav. Cosmol. 19, 101 (2013).ADSCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    D. Hochberg and M. Visser, Phys. Rev. D 56, 4745 (1997); gr-qc/9704082.ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    D. Zipoy, J. Math. Phys. 7, 1137 (1966).ADSCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    K. A. Bronnikov and J. C. Fabris, Class. Quantum Grav. 14, 831 (1997).ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    B. H. Voorhees, Phys. Rev. D 2, 2119 (1970).ADSCrossRefGoogle Scholar
  12. 12.
    S. V. Krasnikov, Grav. Cosmol. 19, 54 (2013).ADSCrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    K. A. Bronnikov and J. P. S. Lemos, Phys. Rev. D 79, 104019 (2009); arXiv: 0902.2360.ADSCrossRefGoogle Scholar
  14. 14.
    V. G. Krechet, Izv. Vuzov, Fiz., No. 10, 57 (2007).Google Scholar
  15. 15.
    V. G. Krechet and D. V. Sadovnikov, Grav. Cosmol. 13, 269 (2007).ADSMATHMathSciNetGoogle Scholar
  16. 16.
    V. G. Krechet and D. V. Sadovnikov, Grav. Cosmol. 15, 337 (2009); arXiv: 0912.2181.ADSCrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    K. A. Bronnikov, V. G. Krechet, and J. P. S. Lemos, Phys. Rev. D 87, 084060 (2013); arXiv: 1303.2993.ADSCrossRefGoogle Scholar
  18. 18.
    K. A. Bronnikov, Acta Phys. Pol. B 4, 251 (1973).MathSciNetGoogle Scholar
  19. 19.
    H. Ellis, J. Math. Phys. 14, 104 (1973).ADSCrossRefGoogle Scholar
  20. 20.
    K. A. Bronnikov, L. N. Lipatova, I. D. Novikov, and A. A. Shatskiy, Grav. Cosmol. 19, 269 (2013).ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    P. K. F. Kuhfittig, Phys. Rev.D 67, 064015 (2003); gr-qc/0401028.ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    T. Matos, Class of Einstein-Maxwell phantom fields: rotating and magnetised wormholes, arXiv: 0902.4439.Google Scholar
  23. 23.
    A. I. Egorov, P. E. Kashargin, and S. V. Sushkov, Scalar multi-wormholes. Space, Time and Fundamental Interactions, No. 1, 5 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Center for Gravitation and Fundamental MetrologyVNIIMSMoscowRussia
  2. 2.Institute of Gravitation and CosmologyPFURMoscowRussia
  3. 3.I. Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations