Gravitation and Cosmology

, Volume 19, Issue 4, pp 257–264 | Cite as

Model of embedded spaces: Peculiarities of dynamical embedding and geometry

Article

Abstract

The paper is devoted to construction of a geometry of 4D space-time arising from geometrization of classical electrodynamics and associated with the Model of Embedding Spaces (MES). The basic premise of the model is the assumption that each element of matter has an eigenspace, and the spacetime of the Universe is a result of mutual dynamic embedding of these spaces, such that the magnitude of partial embedding is determined by the relative Lagrangian density of the element interactions. It is shown that the required geometry of the MES is qualified as an inhomogeneous Finsler geometry (the metric is an arbitrary function of \(\dot x\)); the basic variant of the geometry (the unique law of parallel shift of metric and non-metric tensor quantities) is obtained as a differential generalization of the Riemannian geometry by the formal replacement \({\partial \mathord{\left/ {\vphantom {\partial {\partial x^i \mapsto }}} \right. \kern-\nulldelimiterspace} {\partial x^i \mapsto }}{\partial \mathord{\left/ {\vphantom {\partial {\partial x^i }}} \right. \kern-\nulldelimiterspace} {\partial x^i }} + {{2u^k \partial ^2 } \mathord{\left/ {\vphantom {{2u^k \partial ^2 } {\partial x^{\left[ i \right.} \partial u^{\left. k \right]} }}} \right. \kern-\nulldelimiterspace} {\partial x^{\left[ i \right.} \partial u^{\left. k \right]} }}\), u = dx/ds; and the dynamic embedding provides linearity of this generalization. Additionally, some features ofMES cosmology, which can be caused by the natural electromagnetism of the Universe, are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Riess et al., Astron. J. 116, 1009 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    S. Perlmutter et al., Astron. J. 117, 565 (1999).CrossRefGoogle Scholar
  3. 3.
    H. Weil, Sitzungsber, d. Berl. Akad. S. 465 (1918).Google Scholar
  4. 4.
    Th. Kaluza, Sitzungsber, d. Berl.Akad. S. 966 (1921).Google Scholar
  5. 5.
    O. Klein, Zeits. f. Physik. 37, 895 (1926).ADSCrossRefMATHGoogle Scholar
  6. 6.
    Yu. S. Vladimirov, Gen. Relat. Grav. 12, 1167 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    C. Misner, J. Wheeler, Ann. of Phys. 2, 525 (1957).MathSciNetADSCrossRefMATHGoogle Scholar
  8. 8.
    N. P. Konopleva and V. N. Popov, Gauge Fields (Atomizdat, Moscow, 1972); N. P. Konopleva, Grav. Cosmol. 12, 186 (2006).Google Scholar
  9. 9.
    H. Rund, The Differential Geometry of Finsler Spaces (Springer-Verlag, 1959).CrossRefMATHGoogle Scholar
  10. 10.
    G. Randers, Phys. Rev. 59, 195 (1941).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    A. Lichnerowicz and Y. Thiry, C. r. Acad. Sci. Paris 224, 529 (1947).MathSciNetMATHGoogle Scholar
  12. 12.
    G. Stephenson and C. W. Kilmister, Nuovo Cim. X(3), 230 (1953).MathSciNetCrossRefGoogle Scholar
  13. 13.
    G. S. Asanov, Izvestiia Vuzov. Fizika 1, 86 (1975).Google Scholar
  14. 14.
    J. P. Hsu, Nuovo Cim. 108 B, 183 (1993); ibid., p. 645 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    M. D. Bari et al., Phys. Rev. E 55, 6448 (1997).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    R. G. Beil, Found. Phys. 33, 1107 (2003).MathSciNetCrossRefGoogle Scholar
  17. 17.
    N. Voicu, Progr. Electromagn. Research 113, 83 (2011).Google Scholar
  18. 18.
    V. I. Noskov, Grav. Cosmol. 7, 41 (2001).MathSciNetMATHGoogle Scholar
  19. 19.
    V. I. Noskov, Grav. Cosmol. 10, 1 (2004).Google Scholar
  20. 20.
    V. I. Noskov, Grav. Cosmol. 10, 279 (2004).MathSciNetADSMATHGoogle Scholar
  21. 21.
    V. I. Noskov, Grav. Cosmol. 13, 127 (2007).MathSciNetADSMATHGoogle Scholar
  22. 22.
    V. I. Noskov, J.Math. Sciences 153(6), 799 (2008).MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    L. D. Landau and E. M. Lifshitz, The classical Theory of Fields (Nauka, Moskow, 1988).Google Scholar
  24. 24.
    V. A. Rubakov, Usp. Fiz. Nauk 177, 407 (2007).CrossRefGoogle Scholar
  25. 25.
    V. V. Karbanovski et al., Class. Quantum Grav. 29, 065007 (2012).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Continuous Media MechanicsUral Branch of RASPermRussia

Personalised recommendations