Gravitation and Cosmology

, Volume 19, Issue 1, pp 29–34 | Cite as

Geodesics in a space with a spherically symmetric dislocation

  • Alcides F. Andrade
  • Guilherme de Berredo-Peixoto


We consider a defect produced by a spherically symmetric dislocation in the scope of linear elasticity theory using geometric methods. We derive the induced metric as well as the affine connections and curvature tensors. Since the induced metric is discontinuous, one can expect an ambiguity coming from these quantities, due to products between delta functions or its derivatives. However, one can obtain some well-defined physical predictions of the induced geometry. In particular, we explore some properties of test particle trajectories around the defect and show that these trajectories are curved but cannot be circular orbits. The geometric approach uses gravity methods and indicates a description of gravity theories with exotic sources containing the delta function and its derivatives.


Integration Constant Curvature Tensor Circular Orbit Test Particle Geometric Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. O. Katanaev and I. V. Volovich, Ann. Phys. 216(1), 1 (1992).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    M. O. Katanaev and I. V. Volovich, Ann. Phys. 271, 203 (1999).MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    M. O. Katanaev, Geometric Theory of Defects, Physics-Uspekhi 48(7), 675 (2005).Google Scholar
  4. 4.
    G. de Berredo-Peixoto and M. O. Katanaev, J. Math. Phys. 50, 042501 (2009).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    G. de Berredo-Peixoto, M. O. Katanaev, E. Konstantinova, and I. L. Shapiro, Nuovo Cim. 125B, 915 (2010).Google Scholar
  6. 6.
    P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 2000).Google Scholar
  7. 7.
    M. Kleman and J. Friedel, Rev. Mod. Phys. 80, 61 (2008).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    D. M. Bird and A. R. Preston, Phys. Rev. Lett. 61, 2863 (1988); C. Furtado and F. Moraes, Europhys. Lett. 45, 279 (1999); S. Azevedo and F. Moraes, Phys. Lett. 267A, 208 (2000); C. Furtado, V. B. Bezerra, and F. Moraes, Phys. Lett. 289A, 160 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    L. D. Landau and E.M. Lifshits, Theory of Elasticity (Pergamon, Oxford, 1970).Google Scholar
  10. 10.
    V. C. de Andrade and J. G. Pereira, Phys. Rev. D 56, 4689 (1997).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    M. O. Katanaev, Point Massive Particle in General Relativity, arXiv: 1207.3481.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • Alcides F. Andrade
    • 1
  • Guilherme de Berredo-Peixoto
    • 1
  1. 1.Departamento de Física, ICEUniversidade Federal de Juiz de ForaJuiz de ForaBrazil

Personalised recommendations