Advertisement

Gravitation and Cosmology

, Volume 19, Issue 1, pp 19–28 | Cite as

The Sachs-Wolfe effect in some anisotropic models

  • Paulo AguiarEmail author
  • Paulo Crawford
Article
  • 66 Downloads

Abstract

It is shown for some spatially homogeneous but anisotropic models how the inhomogeneities in the distribution of matter on the last scattering surface produce anisotropies on large angular scales (larger than θ > 2°) which do not differ from the ones produced in Friedmann-Lemaître-Robertson-Walker (FLRW) geometries. That is, for these anisotropic models, the imprint left on the cosmic microwave background radiation (CMBR) by the primordial density fluctuations, in the form of a fractional variation of the temperature of this radiation, is governed by the same expression as the one given for FLRW models. More precisely, under adiabatic initial conditions, the classical Sachs-Wolfe effect is recovered, provided the anisotropy of the overall expansion is small. This conclusion is in agreement with previous work on the same anisotropic models where we found that they may go through an ‘isotropization’ process up to the point that the observations are unable to distinguish them from the standard FLRW model, if the Hubble parameters along the orthogonal directions are assumed to be approximately equal at the present epoch. Here we assumed upper bounds on the present values of anisotropy parameters imposed by COBE observations.

Keywords

Cosmic Microwave Background Radiation Hubble Parameter Anisotropic Model Shear Tensor Locally Rotationally Symmetric 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Ehlers, P. Geren, and R. K. Sachs, J. Math. Phys. 9, 1344 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    U. S. Nilsson et al., Astrophys. J. 522, L1 (1999).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    W. R. Stoeger, R. Maartens, and G. F. R. Ellis, Astrophys. J. 443, 1 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    W. C. Lim et al., Class. Quantum Grav. 18, 5583 (2001).ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    A. Henriques, Astroph. Space Sci. 235, 129 (1996).ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    P. Aguiar and P. Crawford, Phys. Rev. D 62, 123511 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    P. Aguiar and P. Crawford, “Numerical Cumputation of an Integral” http://cosmo.fis.fc.ul.pt/?paguiar/intcomput.pdf
  8. 8.
    A. A. Penzias and R. W. Wilson, Astrophys. J. 142, 419 (1965).ADSCrossRefGoogle Scholar
  9. 9.
    G. F. Smoot, Astrophys. J. 396, L1 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    P. Coles and F. Lucchin, Cosmology-The Origin and Evolution of Cosmic Structure (Wiley, Chichester, England 1995), p. 185.zbMATHGoogle Scholar
  11. 11.
    J. C. Mather et al., Astrophys. J. 420, 439 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    R. B. Partridge, Class. Quant. Grav. 11, A153 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    R. B. Partridge, Rep. Prog. Phys. 51, 647 (1988).ADSCrossRefGoogle Scholar
  14. 14.
    R. K. Sachs and A. M. Wolfe, Astrophys. J. 147, 73 (1967).ADSCrossRefGoogle Scholar
  15. 15.
    C. B. Collins and S. W. Hawking, Mon. Not. Astron. Soc. 162, 307 (1973).ADSGoogle Scholar
  16. 16.
    M. White et al., Ann. Rev. Astron. Astrophys. 32, 319 (1994).ADSCrossRefGoogle Scholar
  17. 17.
    A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University Press, Cambridge, 2000).CrossRefGoogle Scholar
  18. 18.
    V. F. Mukhanov et al., Phys. Rep. 215, 203 (1992).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    W. Hu, PhD Thesis (Univ. of California, Berkeley, 1995), Chapter 4.Google Scholar
  20. 20.
    S. Perlmutter et al., Nature 391, 51 (1998).ADSCrossRefGoogle Scholar
  21. 21.
    A. G. Riess et al., Astron. J. 116, 1009 (1998).ADSCrossRefGoogle Scholar
  22. 22.
    E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley, 1990), Chapter 9.2.zbMATHGoogle Scholar
  23. 23.
  24. 24.
  25. 25.
    E. Martinez-Gonzalez and J. L. Sanz, Astron. Astrophys. 300, 346 (1995).ADSGoogle Scholar
  26. 26.
    R. Maartens et al., Astron. Astrophys. 309, L7 (1996).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Centro de Astronomia e Astrofísica da Universidade de LisboaLisboaPortugal

Personalised recommendations