Skip to main content
Log in

The Sachs-Wolfe effect in some anisotropic models

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

It is shown for some spatially homogeneous but anisotropic models how the inhomogeneities in the distribution of matter on the last scattering surface produce anisotropies on large angular scales (larger than θ > 2°) which do not differ from the ones produced in Friedmann-Lemaître-Robertson-Walker (FLRW) geometries. That is, for these anisotropic models, the imprint left on the cosmic microwave background radiation (CMBR) by the primordial density fluctuations, in the form of a fractional variation of the temperature of this radiation, is governed by the same expression as the one given for FLRW models. More precisely, under adiabatic initial conditions, the classical Sachs-Wolfe effect is recovered, provided the anisotropy of the overall expansion is small. This conclusion is in agreement with previous work on the same anisotropic models where we found that they may go through an ‘isotropization’ process up to the point that the observations are unable to distinguish them from the standard FLRW model, if the Hubble parameters along the orthogonal directions are assumed to be approximately equal at the present epoch. Here we assumed upper bounds on the present values of anisotropy parameters imposed by COBE observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Ehlers, P. Geren, and R. K. Sachs, J. Math. Phys. 9, 1344 (1968).

    Article  ADS  Google Scholar 

  2. U. S. Nilsson et al., Astrophys. J. 522, L1 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  3. W. R. Stoeger, R. Maartens, and G. F. R. Ellis, Astrophys. J. 443, 1 (1995).

    Article  ADS  Google Scholar 

  4. W. C. Lim et al., Class. Quantum Grav. 18, 5583 (2001).

    Article  ADS  MATH  Google Scholar 

  5. A. Henriques, Astroph. Space Sci. 235, 129 (1996).

    Article  ADS  MATH  Google Scholar 

  6. P. Aguiar and P. Crawford, Phys. Rev. D 62, 123511 (2000).

    Article  ADS  Google Scholar 

  7. P. Aguiar and P. Crawford, “Numerical Cumputation of an Integral” http://cosmo.fis.fc.ul.pt/?paguiar/intcomput.pdf

  8. A. A. Penzias and R. W. Wilson, Astrophys. J. 142, 419 (1965).

    Article  ADS  Google Scholar 

  9. G. F. Smoot, Astrophys. J. 396, L1 (1992).

    Article  ADS  Google Scholar 

  10. P. Coles and F. Lucchin, Cosmology-The Origin and Evolution of Cosmic Structure (Wiley, Chichester, England 1995), p. 185.

    MATH  Google Scholar 

  11. J. C. Mather et al., Astrophys. J. 420, 439 (1994).

    Article  ADS  Google Scholar 

  12. R. B. Partridge, Class. Quant. Grav. 11, A153 (1994).

    Article  ADS  Google Scholar 

  13. R. B. Partridge, Rep. Prog. Phys. 51, 647 (1988).

    Article  ADS  Google Scholar 

  14. R. K. Sachs and A. M. Wolfe, Astrophys. J. 147, 73 (1967).

    Article  ADS  Google Scholar 

  15. C. B. Collins and S. W. Hawking, Mon. Not. Astron. Soc. 162, 307 (1973).

    ADS  Google Scholar 

  16. M. White et al., Ann. Rev. Astron. Astrophys. 32, 319 (1994).

    Article  ADS  Google Scholar 

  17. A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University Press, Cambridge, 2000).

    Book  Google Scholar 

  18. V. F. Mukhanov et al., Phys. Rep. 215, 203 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  19. W. Hu, PhD Thesis (Univ. of California, Berkeley, 1995), Chapter 4.

    Google Scholar 

  20. S. Perlmutter et al., Nature 391, 51 (1998).

    Article  ADS  Google Scholar 

  21. A. G. Riess et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  22. E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley, 1990), Chapter 9.2.

    MATH  Google Scholar 

  23. http://www.esa.int/SPECIALS/Planck/index.html

  24. http://amiba.asiaa.sinica.edu.tw/

  25. E. Martinez-Gonzalez and J. L. Sanz, Astron. Astrophys. 300, 346 (1995).

    ADS  Google Scholar 

  26. R. Maartens et al., Astron. Astrophys. 309, L7 (1996).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Aguiar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguiar, P., Crawford, P. The Sachs-Wolfe effect in some anisotropic models. Gravit. Cosmol. 19, 19–28 (2013). https://doi.org/10.1134/S0202289313010027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289313010027

Keywords

Navigation