Skip to main content

Scalar models for the generalized Chaplygin gas and the structure formation constraints

Abstract

The generalized Chaplygin gas model represents an attempt to unify dark matter and dark energy. It is characterized by a fluid with the equation of state p = −A/ρ α. It can be obtained from a generalization of the Dirac-Born-Infeld (DBI) action for a scalar, tachyonic field. At a background level, this model gives very good results, but it suffers from many drawbacks at the perturbative level. We show that, while for background analysis it is possible to consider any value of α, the perturbative analysis must be restricted to positive values of α. This restriction can be circumvented if the origin of the generalized Chaplygin gas is traced back to a self-interacting scalar field, instead of the DBI action. But, in doing so, the predictions coming from formation of large-scale structures reduce the generalized Chaplygin gas model to a kind of quintessence model, and the unification scenario is lost if the scalar field is the canonical one. However, if the unification condition is imposed from the beginning as a prior, the model may remain competitive. More interesting results concerning the unification program are obtained if a non-canonical self-interacting scalar field, inspired by Rastall’s theory of gravity, is invoked. In this case, an agreement with the background tests is possible.

This is a preview of subscription content, access via your institution.

References

  1. E. Komatsu et al., Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation, arXiV:1001. 4538.

  2. R. R. Caldwell and M. Kamionkowski, Ann. Rev. Nucl. Part. Sci. 59, 397 (2009).

    ADS  Article  Google Scholar 

  3. G. Bertone, D. Hooper and J. Silk, Phys. Rep. 405, 279 (2005).

    ADS  Article  Google Scholar 

  4. T. Padmanabhan, Phys. Rep. 380, 235 (2003).

    MathSciNet  ADS  MATH  Article  Google Scholar 

  5. J. Martin, Mod. Phys. Lett. A 23, 1252 (2008).

    ADS  Article  Google Scholar 

  6. A. Yu. Kamenshchik, U. Moschella, and V. Pasquier, Phys. Lett. B 511, 265 (2001).

    ADS  MATH  Article  Google Scholar 

  7. M. C. Bento, O. Bertolami, and A. A. Sen, Phys. Rev. D 66, 043507 (2002).

    ADS  Article  Google Scholar 

  8. N. Bilic, G. B. Tupper, and R. D. Viollier, Phys. Lett. B 535, 17 (2002).

    ADS  MATH  Article  Google Scholar 

  9. J. C. Fabris, S. V. B. Goncalves, and P. E. de Souza, Gen. Rel. Grav. 34, 53 (2002).

    MATH  Article  Google Scholar 

  10. R. Jackiw, A particle field theorist’s lectures on supersymmetric, non-Abelian fluid mechanics and D-branes, physics/0010042.

  11. R. Colistete Jr., J. C. Fabris, S. V. B. Goncalves, and P. E. de Souza, Int. J. Mod. Phys. D 13, 669 (2004); R. Colistete Jr., J. C. Fabris, and S. V. B. Goncalves, Int. J. Mod. Phys. D 14, 775 (2005); R. Colistete Jr. and J. C. Fabris, Class. Quantum Grav. 22, 2813 (2005).

    ADS  Article  Google Scholar 

  12. T. Barreiro, O. Bertolami, and P. Torres, Phys. Rev. D 78, 043530 (2008).

    ADS  Article  Google Scholar 

  13. L. Amendola, F. Finelli, C. Burigana, and D. Carturan, JCAP 0307, 005 (2003).

    ADS  Google Scholar 

  14. O. Piattella, JCAP 1003, 012 (2010).

    ADS  Google Scholar 

  15. V. Gorini, A. Y. Kamenshchik, U. Moschella, O. F. Piattella, and A. A. Starobinsky, JCAP 0802, 016 (2008).

    ADS  Google Scholar 

  16. J. C. Fabris, S. V. B. Gonçalves, H. E. S. Velten, and W. Zimdahl, Phys. Rev. D 78, 103523 (2008); J. C. Fabris, H. E. S. Velten, and W. Zimdahl, Phys. Rev. D 81, 087303 (2010).

    ADS  Article  Google Scholar 

  17. C. E. M. Batista, J. C. Fabris, and M. Morita, Gen. Rel. Grav. 42, 839 (2010).

    ADS  MATH  Article  Google Scholar 

  18. P. Rastall, Phys. Rev. D 6, 3357 (1972).

    MathSciNet  ADS  Article  Google Scholar 

  19. C. Gao, M. Kunz, A. R. Liddle, and D. Parkinson, Phys. Rev. D 81, 043520 (2010).

    ADS  Article  Google Scholar 

  20. V. Gorini, A. Y. Kamenshchik, U. Moschella, and V. Pasquier, Phys. Rev. D 69, 123512 (2004).

    MathSciNet  ADS  Article  Google Scholar 

  21. A. V. Frolov, L. Kofman, and A. A. Starobinsky, Phys. Lett. B 545, 8 (2002).

    ADS  MATH  Article  Google Scholar 

  22. V. Gorini, A. Kamenshchik, U. Moschella, V. Pasquier, and A. Starobinsky, Phys. Rev. D 72, 103518 (2005).

    ADS  Article  Google Scholar 

  23. N. Sugiyama, Astrophys. J. Suppl. 100, 281 (1995); J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay, Astrophys. J. 304, 15 (1986).

    ADS  Article  Google Scholar 

  24. J. C. Fabris, J. Solà, and I. L. Shapiro, JCAP 0702, 016 (2007).

    ADS  Google Scholar 

  25. A. Shafieloo, V. Sahni, and A. A. Starobinsky, Phys. Rev. D 80, 101301 (2009).

    ADS  Article  Google Scholar 

  26. L. L. Smalley, Nuovo Cim. B 80, 42 (1984).

    ADS  Article  Google Scholar 

  27. C. E. M. Batista, J. C. Fabris, and M. Hamani Daouda, Nuovo Cim. B 125, 957 (2010)

    Google Scholar 

  28. A. Nicolis, R. Rattazzi, and E. Trincherini, Phys. Rev. D 79, 064036 (2009).

    MathSciNet  ADS  Article  Google Scholar 

  29. A. R. Liddle, Mon. Not. R. Astron. Soc. 377, L74 (2007).

    ADS  Article  Google Scholar 

  30. M. Szydlowski and A. Kurek, AIC, BIC, Bayesian evidence and a notion of simplicity of cosmological model, arXiv: 0801.0638.

  31. D. Bertacca and N. Bartolo, JCAP 0711, 026 (2007).

    ADS  Google Scholar 

  32. B. Li and J. D. Barrow, Phys. Rev. D 79, 103521 (2009).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlio C. Fabris.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fabris, J.C., Guio, T.C.d.C., Daouda, M.H. et al. Scalar models for the generalized Chaplygin gas and the structure formation constraints. Gravit. Cosmol. 17, 259 (2011). https://doi.org/10.1134/S0202289311030030

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0202289311030030

Keywords

  • Dark Matter
  • Dark Energy
  • Probability Distribution Function
  • Cosmic Microwave Background
  • Wilkinson Microwave Anisotropy Probe