Skip to main content
Log in

Big rip avoidance via black hole production

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We consider a cosmological scenario in which the expansion of the Universe is dominated by phantom dark energy and black holes which condense out of the latter component. The mass of the black holes decreases via Hawking evaporation and by accretion of phantom fluid, but new black holes arise continuously, so that the overall evolution can be rather complex. We study the corresponding dynamical system to unravel this evolution and to single out scenarios where the Big Rip singularity does not occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Caldwell, Phys. Lett. B 545, 23 (2002).

    Article  ADS  Google Scholar 

  2. R. R. Caldwell et al., Phys. Rev. Lett. 91, 071301 (2003).

  3. D. Pavón and B. Wang, Gen. Relat. Gravit. 41, 1 (2009); arXiv: 0712.0565.

    Article  MATH  ADS  Google Scholar 

  4. T. Piran and R. M. Wald, Phys. Lett. 90A, 20 (1982).

    ADS  Google Scholar 

  5. D. Gross, M. J. Perry, and G. L. Yaffe, Phys. Rev. D 25, 330 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  6. J. I. Kapusta, Phys. Rev. D 30, 831 (1984).

    Article  ADS  Google Scholar 

  7. R.-G. Cai and A. Wang, Phys. Rev. D 73, 063005 (2006).

  8. P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003); K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  9. E. Babichev et al., Phys. Rev. Lett. 93, 021102 (2004).

  10. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  11. D. N. Page, Phys. Rev. D 13, 198 (1976).

    Article  ADS  Google Scholar 

  12. G. Sansone and R. Conti, Equazioni Differenziali Non Lineari (Edizioni Cremonese, Rome, 1956).

    MATH  Google Scholar 

  13. J. M. Cline, S.-Y. Jeon, and G. D. Moore, Phys. Rev. D 70, 043543 (2004).

    Google Scholar 

  14. F. Piazza and S. Tsujikawa, JCAP 07, 004 (2004).

  15. E. Komatsu et al., Five-years Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation; arXiv:0803.0547.

  16. P. F. González-Díaz, Phys. Rev. D 68, 021303(R) (2003).

  17. J. A. Jiménez Madrid, Phys. Lett. B 634, 106 (2006).

    Article  ADS  Google Scholar 

  18. E. Elizalde, S. Nojiri, and S. Odintsov, Phys. Rev. D 70, 043539 (2004).

    Google Scholar 

  19. J. D. Barrow, Class. Quantum Grav. 21, L79 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Fabris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabris, J.C., Pavón, D. Big rip avoidance via black hole production. Gravit. Cosmol. 15, 234–240 (2009). https://doi.org/10.1134/S0202289309030062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289309030062

PACS numbers

Navigation