Skip to main content
Log in

Gravitational waves in singular and bouncing FLRW universes

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We investigate propagation of gravitational waves in two models belonging to the Friedman-Lemaître-Robertson-Walker (FLRW) class of cosmologies: the singular Einstein-Maxwell Universe (EMU), which has an electromagnetic field described by Maxwell’s electrodynamics as the source of its geometry, and the bouncing Nonlinear Electrodynamics Universe (NLEU), which has the electromagnetic field described by a nonlinear generalization of Maxwell’s electrodynamics as the source of its geometry. We work with an explicitly gauge-independent formulation of cosmological perturbations in FLRW models and analyze the qualitative features of the dynamical system that describes the propagation of primordial tensorial perturbations in both geometries. Based on this analysis, we show that gravitational waves generated near a singularity or a bounce exhibit qualitatively different behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley, Redwood City, CA, 1988).

    Google Scholar 

  2. M. Novello and S. E. Perez Bergliaffa, Phys. Rep. 463, 127 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  3. W. de Sitter, Proc. Kon. Ned. Akad. Wet. 19, 1217 (1917).

    ADS  Google Scholar 

  4. M. Novello and J. M. Salim, Phys. Rev. D 20, 377 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  5. V. Mukhanov and R. Brandenberger, Phys. Rev. Lett. 68, 1969 (1992).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. M. Novello, A. R. Oliveira, J.M. Salim, and E. Elbaz, Int. J. Mod. Phys. D 1, 641 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  7. G. L. Murphy, Phys. Rev. D 8, 4231 (1973).

    Article  ADS  Google Scholar 

  8. J. M. Salim and H. P. Oliveira, Acta Phys. Pol. B 8, 649 (1988).

    Google Scholar 

  9. J. Acacio de Barros, N. Pinto-Neto, and M. A. Sagioro-Leal, Phys. Rev. Lett. A 241, 229 (1998).

    ADS  Google Scholar 

  10. G. Veneziano, hep-th/0002094.

  11. V. A. De Lorenci, R. Klippert, M. Novello, and J.M. Salim, Phys. Rev. D 65, 063501 (2002).

    Google Scholar 

  12. T. Tajima, S. Cable, K. Shibata, and R. M. Kulsrud, Astrophys. J. 390, 309 (1992).

    Article  ADS  Google Scholar 

  13. A. Campos and B. L. Hu, Phys. Rev. D 58, 125 021 (1998).

  14. G. G. Dune, Int. J.Mod. Phys. A 12, 1143 (1997).

    Article  ADS  Google Scholar 

  15. M. Joyce and M. Shaposhnikov, Phys. Rev. Lett. 79, 1193 (1997).

    Article  ADS  Google Scholar 

  16. A. Raychaudhuri, Phys. Rev. 98, 1123 (1955).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-time (Cambridge University Press, Cambridge, 1973).

    Book  MATH  Google Scholar 

  18. P. Jordan, J. Ehlers, and W. Kundt, Akad. Swiss. Mainz. Abh.Math-Nat. Kl. Jagh. 2 (1960).

  19. A. Lichnerowicz, Ann.Math. Pura Appl. 50, 1 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  20. G. F. R. Ellis, in Proceedings of the International School of Physics “Enrico Fermi” (Academic, London, 1971), p. 104.

    Google Scholar 

  21. M. Novello and J. M. Salim, Fund. Cosm. Phys. 8, 201 (1983).

    ADS  Google Scholar 

  22. S.W. Hawking, Astrophys. J. 145, 544 (1966).

    Article  ADS  Google Scholar 

  23. J.M. Stewart and M. Walker,Proc.R. Soc. A 341, 49 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  24. E. M. Lifshitz and I. N. Khalatnikov, Adv. Phys. 12, 185 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  25. M. Novello, J. M. Salim, M. C. Mota da Silva, S. E. Jorás, and R. Klippert, Phys. Rev. D 52, 730 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  26. R. C. Tolman and P. Ehrenfest, Phys. Rev. D 36, 1791 (1930).

    Article  ADS  Google Scholar 

  27. M. Hindmarsh and A. Everett, Phys. Rev. D 58,103 505 (1998).

    Google Scholar 

  28. H. P. Robertson, Rev. Mod. Phys. 5, 62 (1933).

    Article  MATH  ADS  Google Scholar 

  29. R. Coquereaux and A. Grossmann, Ann. Phys. 143, 296 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  30. L. P. Grishchuk, arXiv: 0707.3319v2 [gr-qc].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Antunes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antunes, V., Goulart, E. & Novello, M. Gravitational waves in singular and bouncing FLRW universes. Gravit. Cosmol. 15, 191–198 (2009). https://doi.org/10.1134/S0202289309030013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289309030013

PACS numbers

Navigation