Skip to main content
Log in

Transition State Structure and Mechanism of the Reaction of Hydroxybenzenes with N-Centered Radical in Non-Ionizing Media

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Experimentaly and theoretically, using the method of density functional theory, the structure of 2,2'-diphenyl-1-picrylhydrazyl radical and the mechanism of its reaction with di- and trihydroxybenzenes in non-ionizing media have been investigated. It was established that in nonpolar solvents the elimination of hydrogen atom from hydroxybenzene by the radical occurs as a conjugate transfer of proton and electron, as confirmed by the existence of a deuterium isotope effect as well as characteristic geometrical and electronic parameters of pre-reaction complexes and transition states of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valgimigli, L., Banks, J.T., Ingold, K.U., and Lusztyk, J., J. Am. Chem. Soc., 1995, vol. 117, no. 40, p. 9966. doi 10.1021/ja00145a005

    Article  CAS  Google Scholar 

  2. Sirjoosingh, A. and Hammes-Schiffer, S., J. Phys. Chem. (A), 2011, vol. 115, no. 11, p. 2367. doi 10.1021/jp111210c

    Article  CAS  Google Scholar 

  3. Litwinienko, G. and Ingold, K.U., Acc. Chem. Res., 2007, vol. 40, no. 3, p. 222. doi 10.1021/ar0682029

    Article  CAS  PubMed  Google Scholar 

  4. Foti, M.C., Daquino, C., Mackie, I.D., DiLabio, G.A., and Ingold, K.U., J. Org. Chem., 2008, vol. 73, no. 23, p. 9270. doi 10.1021/jo8016555

    Article  CAS  PubMed  Google Scholar 

  5. Vermerris, W. and Nicolson, R., Phenolic Compound Biochemistry, Dodrecht: Springer, 2006.

    Google Scholar 

  6. Belaya, N.I., Belyj, A.V., Zarechnaya, O.M., Scherbakov, I.N., Mikhalchuk, V.M., and Doroshkevich, V.S., Russ. J. Gen. Chem., 2017, vol. 87, no. 4, p. 690. doi 10.1134/S1070363217040053

    Article  CAS  Google Scholar 

  7. Musialik, M. and Litwinienko, G., Org. Lett., 2005, vol. 7, no. 22, p. 4951. doi 10.1021/ol051962j.

    Article  CAS  PubMed  Google Scholar 

  8. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision, B.01 Gaussian, Inc., Wallingford CT, 2010.

    Google Scholar 

  9. Weinberg, D.R., Gagliardi, C.J., Hull, J.F., Murphy, C.F., Kent, C.A., Westlake, B., Paul, A., Ess, D.H., McCafferty, G.D., and Meyer, T.J., Chem Rev., 2007, vol. 107, no. 11, p. 5004. doi 10.1021/cr0500030

    Article  CAS  PubMed Central  Google Scholar 

  10. Roginskii, V.A., Fenol’nyie antioksidantyi. Reaktsionnaya sposobnost’ i effektivnost’ (Phenolic Antioxidants. Reactivity and Effectiveness), Moscow: Nauka, 1988.

    Google Scholar 

  11. Denisov, E.T. and Denisova, T.G., Russ. Chem. Bull., 2009, vol. 78, no. 11, p. 1129. doi 10.1070/RC2009v078n11ABEH004084

    Google Scholar 

  12. Denisov, E.T. and Azatyan, V.V., Ingibirovanie tsepnyikh reaktsii (Inhibition of Chain Reactions), Chernogolovka: IPHF RAN, 1997.

    Google Scholar 

  13. Stewart, J.J.P., J. Mol. Model., 2007, vol. 13, no. 12, p. 1173. doi 10.1007/s00894-007-0233-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, no. 8, p. 2999. doi 10.1021/cr9904009

    Article  CAS  Google Scholar 

  15. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., and Skiff, W.M., J. Am. Chem. Soc., 1992, vol. 114, no. 25, p. 10024. doi 10.1021/ja00051a040

    Article  CAS  Google Scholar 

  16. Mayer, J.M., Hrovat, D.A., Thomas, J.L., and Borden, W.T., J. Am. Chem. Soc., 2002, vol. 124, no. 37, p. 11142. doi 10.1021/ja012732c

    Article  CAS  Google Scholar 

  17. Dapprich, S. and Frenking, G., J. Phys. Chem., 1995, vol. 99, no. 23, p. 9352. doi 10.1021/j100023a009

    Article  CAS  Google Scholar 

  18. Beider, R., Atoms in Molecules. Quantum Theory, Moscow: Mir, 2001.

    Google Scholar 

  19. Zupan, A., Burke, K., Emzerhof, M., and Perdew, J.P., J. Chem. Phys., 1997, vol. 106, no. 24, p. 10184. doi 10.1063/1.474101

    Article  CAS  Google Scholar 

  20. Koch, U. and Popelier, P.L.A., J. Chem. Phys., 1995, vol. 99, no. 24, p. 9747. doi 10.1021/j100024a016

    Article  CAS  Google Scholar 

  21. Cremer, D. and Kraka, E., Angew. Chem. Int. Ed., 1984, vol. 23, no. 8, p. 627. doi 10.1002/anie.198406271

    Article  Google Scholar 

  22. Espinosa, E., Alkorta, I., Elguero, J., and Molins, E., J. Chem. Phys., 2002, vol. 117, no. 12, p. 5529. doi 10.1063/1.1501133

    Article  CAS  Google Scholar 

  23. Mata, I., Alkorta, I., Espinosa, E., and Molins, E., Chem. Phys. Lett., 2011, vol. 507, nos. 1–3, p. 185. doi 10.1016/j.cplett.2011.03.055

    Article  CAS  Google Scholar 

  24. Grabowski, S.J., Annu. Rep. Prog. Chem., 2006, vol. 102, p. 131. doi 10.1039/B417200K

    Article  CAS  Google Scholar 

  25. Anslyn, E.V. and Dougherty, D.A., Modern Physical Organic Chemistry, Sausalito, California: University Science Books, 2006.

    Google Scholar 

  26. Tishchenko, O., Truhlar, D.G., Ceulemans, A., and Nguyen, M.T., J. Am. Chem. Soc., 2008, vol. 130, no. 22, p. 7000. doi 10.1021/ja7102907

    Article  CAS  PubMed  Google Scholar 

  27. Batsanov, S.S., Inorg. Mater., 2001, vol. 37, no. 9, p. 871. doi 10.1023/A:1011625728803

    Article  CAS  Google Scholar 

  28. Lu, T., Chen, F., J. Comp. Chem., 2012, vol. 33, no. 5, p. 580. doi 10.1002/jcc.22885

    Article  CAS  Google Scholar 

  29. Armarego, W.L.F. and Chai, C.L.L., Purification of Laboratory Chemicals, Burlington: Elsevier Science, 2003.

    Google Scholar 

  30. Preparativnaya organicheskaya khimiya (Preparative Organic Chemistry), Vul’fson, M., Ed., Moscow: GJhTI, 1959.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Belaya.

Additional information

Original Russian Text © N.I. Belaya, A.V. Belyi, O.M. Zarechnaya, I.N. Shcherbakov, V.S. Doroshkevich, 2018, published in Zhurnal Obshchei Khimii, 2018, Vol. 88, No. 7, pp. 1057–1069.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belaya, N.I., Belyi, A.V., Zarechnaya, O.M. et al. Transition State Structure and Mechanism of the Reaction of Hydroxybenzenes with N-Centered Radical in Non-Ionizing Media. Russ J Gen Chem 88, 1351–1362 (2018). https://doi.org/10.1134/S013434751807001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S013434751807001X

Keywords

Navigation