Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 7, pp 1351–1362 | Cite as

Transition State Structure and Mechanism of the Reaction of Hydroxybenzenes with N-Centered Radical in Non-Ionizing Media

  • N. I. Belaya
  • A. V. Belyi
  • O. M. Zarechnaya
  • I. N. Shcherbakov
  • V. S. Doroshkevich
Article
  • 15 Downloads

Abstract

Experimentaly and theoretically, using the method of density functional theory, the structure of 2,2'-diphenyl-1-picrylhydrazyl radical and the mechanism of its reaction with di- and trihydroxybenzenes in non-ionizing media have been investigated. It was established that in nonpolar solvents the elimination of hydrogen atom from hydroxybenzene by the radical occurs as a conjugate transfer of proton and electron, as confirmed by the existence of a deuterium isotope effect as well as characteristic geometrical and electronic parameters of pre-reaction complexes and transition states of the reaction.

Keywords

reaction mechanism hydroxybenzene 2,2'-diphenyl-1-picrylhydrazyl transition state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Valgimigli, L., Banks, J.T., Ingold, K.U., and Lusztyk, J., J. Am. Chem. Soc., 1995, vol. 117, no. 40, p. 9966. doi 10.1021/ja00145a005CrossRefGoogle Scholar
  2. 2.
    Sirjoosingh, A. and Hammes-Schiffer, S., J. Phys. Chem. (A), 2011, vol. 115, no. 11, p. 2367. doi 10.1021/jp111210cCrossRefGoogle Scholar
  3. 3.
    Litwinienko, G. and Ingold, K.U., Acc. Chem. Res., 2007, vol. 40, no. 3, p. 222. doi 10.1021/ar0682029CrossRefGoogle Scholar
  4. 4.
    Foti, M.C., Daquino, C., Mackie, I.D., DiLabio, G.A., and Ingold, K.U., J. Org. Chem., 2008, vol. 73, no. 23, p. 9270. doi 10.1021/jo8016555CrossRefGoogle Scholar
  5. 5.
    Vermerris, W. and Nicolson, R., Phenolic Compound Biochemistry, Dodrecht: Springer, 2006.Google Scholar
  6. 6.
    Belaya, N.I., Belyj, A.V., Zarechnaya, O.M., Scherbakov, I.N., Mikhalchuk, V.M., and Doroshkevich, V.S., Russ. J. Gen. Chem., 2017, vol. 87, no. 4, p. 690. doi 10.1134/S1070363217040053CrossRefGoogle Scholar
  7. 7.
    Musialik, M. and Litwinienko, G., Org. Lett., 2005, vol. 7, no. 22, p. 4951. doi 10.1021/ol051962j.CrossRefGoogle Scholar
  8. 8.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision, B.01 Gaussian, Inc., Wallingford CT, 2010.Google Scholar
  9. 9.
    Weinberg, D.R., Gagliardi, C.J., Hull, J.F., Murphy, C.F., Kent, C.A., Westlake, B., Paul, A., Ess, D.H., McCafferty, G.D., and Meyer, T.J., Chem Rev., 2007, vol. 107, no. 11, p. 5004. doi 10.1021/cr0500030CrossRefGoogle Scholar
  10. 10.
    Roginskii, V.A., Fenol’nyie antioksidantyi. Reaktsionnaya sposobnost’ i effektivnost’ (Phenolic Antioxidants. Reactivity and Effectiveness), Moscow: Nauka, 1988.Google Scholar
  11. 11.
    Denisov, E.T. and Denisova, T.G., Russ. Chem. Bull., 2009, vol. 78, no. 11, p. 1129. doi 10.1070/RC2009v078n11ABEH004084Google Scholar
  12. 12.
    Denisov, E.T. and Azatyan, V.V., Ingibirovanie tsepnyikh reaktsii (Inhibition of Chain Reactions), Chernogolovka: IPHF RAN, 1997.Google Scholar
  13. 13.
    Stewart, J.J.P., J. Mol. Model., 2007, vol. 13, no. 12, p. 1173. doi 10.1007/s00894-007-0233-4CrossRefGoogle Scholar
  14. 14.
    Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, no. 8, p. 2999. doi 10.1021/cr9904009CrossRefGoogle Scholar
  15. 15.
    Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., and Skiff, W.M., J. Am. Chem. Soc., 1992, vol. 114, no. 25, p. 10024. doi 10.1021/ja00051a040CrossRefGoogle Scholar
  16. 16.
    Mayer, J.M., Hrovat, D.A., Thomas, J.L., and Borden, W.T., J. Am. Chem. Soc., 2002, vol. 124, no. 37, p. 11142. doi 10.1021/ja012732cCrossRefGoogle Scholar
  17. 17.
    Dapprich, S. and Frenking, G., J. Phys. Chem., 1995, vol. 99, no. 23, p. 9352. doi 10.1021/j100023a009CrossRefGoogle Scholar
  18. 18.
    Beider, R., Atoms in Molecules. Quantum Theory, Moscow: Mir, 2001.Google Scholar
  19. 19.
    Zupan, A., Burke, K., Emzerhof, M., and Perdew, J.P., J. Chem. Phys., 1997, vol. 106, no. 24, p. 10184. doi 10.1063/1.474101CrossRefGoogle Scholar
  20. 20.
    Koch, U. and Popelier, P.L.A., J. Chem. Phys., 1995, vol. 99, no. 24, p. 9747. doi 10.1021/j100024a016CrossRefGoogle Scholar
  21. 21.
    Cremer, D. and Kraka, E., Angew. Chem. Int. Ed., 1984, vol. 23, no. 8, p. 627. doi 10.1002/anie.198406271CrossRefGoogle Scholar
  22. 22.
    Espinosa, E., Alkorta, I., Elguero, J., and Molins, E., J. Chem. Phys., 2002, vol. 117, no. 12, p. 5529. doi 10.1063/1.1501133CrossRefGoogle Scholar
  23. 23.
    Mata, I., Alkorta, I., Espinosa, E., and Molins, E., Chem. Phys. Lett., 2011, vol. 507, nos. 1–3, p. 185. doi 10.1016/j.cplett.2011.03.055CrossRefGoogle Scholar
  24. 24.
    Grabowski, S.J., Annu. Rep. Prog. Chem., 2006, vol. 102, p. 131. doi 10.1039/B417200KCrossRefGoogle Scholar
  25. 25.
    Anslyn, E.V. and Dougherty, D.A., Modern Physical Organic Chemistry, Sausalito, California: University Science Books, 2006.Google Scholar
  26. 26.
    Tishchenko, O., Truhlar, D.G., Ceulemans, A., and Nguyen, M.T., J. Am. Chem. Soc., 2008, vol. 130, no. 22, p. 7000. doi 10.1021/ja7102907CrossRefGoogle Scholar
  27. 27.
    Batsanov, S.S., Inorg. Mater., 2001, vol. 37, no. 9, p. 871. doi 10.1023/A:1011625728803CrossRefGoogle Scholar
  28. 28.
    Lu, T., Chen, F., J. Comp. Chem., 2012, vol. 33, no. 5, p. 580. doi 10.1002/jcc.22885CrossRefGoogle Scholar
  29. 29.
    Armarego, W.L.F. and Chai, C.L.L., Purification of Laboratory Chemicals, Burlington: Elsevier Science, 2003.Google Scholar
  30. 30.
    Preparativnaya organicheskaya khimiya (Preparative Organic Chemistry), Vul’fson, M., Ed., Moscow: GJhTI, 1959.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. I. Belaya
    • 1
  • A. V. Belyi
    • 1
  • O. M. Zarechnaya
    • 2
  • I. N. Shcherbakov
    • 3
  • V. S. Doroshkevich
    • 1
  1. 1.Donetsk National UniversityDonetskUkraine
  2. 2.L. M. Litvinenko Institute of Physical Organic Chemistry and Coil ChemistryDonetskUkraine
  3. 3.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations