Skip to main content
Log in

Climate Change and Threats to Water Security: A Review

  • REVIEW
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

An overview of publications on the hydrological consequences of climate change in the context of the ongoing and projected threats to water security is presented. Two hydrological indicators of water security are considered both at the global and regional scales: mean river flow regime as an indicator of the provision of the territory with surface water resources, as well as the flood regime, as an indicator of flood hazard. The paper is structured as follows. The first section briefly discusses the current understanding of the mechanisms of the influence of anthropogenic climate change on water resources and flood hazard. The second section considers the methodological aspects of constructing assessments of the ongoing changes in the river regimes, and reviews some of the estimates of changes in water resources and high river flow in the world and Russia. The third section is devoted to the global and regional assessments of future changes in the river runoff regime in the twenty-first century and discusses the methodological challenges of carrying out such assessments. The fourth section evaluates socio-economic consequences of the current and forecasted hydrological changes and their influence on water security. The paper is finalized by several summarizing remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERRENCES

  1. Ahn, K.-H. and Merwade, V., Quantifying the relative impact of climate and human activities on streamflow, J. Hydrol., 2014, vol. 515, pp. 257–266. https://doi.org/10.1016/j.jhydrol.2014.04.062

    Article  Google Scholar 

  2. Alfieri, L. et al., Global projections of river flood risk in a warmer world, Earth’s Future, 2017, vol. 5 no. 2, pp. 171–182. https://doi.org/10.1002/2016ef000485

    Article  Google Scholar 

  3. Alkama, R., Ribes, A., Decharme, B., and Marchand, L., Detection of global runoff changes: results from observations and CMIP5 experiments, Hydrol. Earth Syst. Sci., 2013, vol. 17, pp. 2967–2979. https://doi.org/10.5194/hess-17-2967-2013

    Article  Google Scholar 

  4. Allan, R., Liu, C., Zahn, M., Lavers, D., Koukouvagias, E., and Bodas-Salcedo, A., Physically consistent responses of the global atmospheric hydrological cycle in models and observations, Surv. Geophys., 2014, vol. 35, pp. 533–552.  https://doi.org/10.1007/s10712-012-9213-z

    Article  Google Scholar 

  5. Allchin, M. I. and Déry, S. J., A spatio-temporal analysis of trends in Northern Hemisphere snow-dominated area and duration, 1971–2014, Annals of Glaciol., 2017, vol. 58, no. 75, pp. 21–35.

    Article  Google Scholar 

  6. Arheimer, B. and Lindström, G., Climate impact on floods: changes in high flows in Sweden in the past and the future (1911–2100), Hydrol. Earth Syst. Sci., 2015, vol. 19, no. 2, pp. 771–784. https://doi.org/10.5194/hess-19-771-2015

    Article  Google Scholar 

  7. Arnell, N.W. and Gosling, S.N., The impacts of climate change on river flood risk at the global scale, Climatic Change, 2016, vol. 134, no. 3, pp. 387–401. https://doi.org/10.1007/s10584-014-1084-5

    Article  Google Scholar 

  8. Asadieh, B. and Krakauer, N., Global trends in extreme precipitation: Climate models versus observations, Hydrol. Earth Syst. Sci., 2015, vol. 19, pp. 877–891. https://doi.org/10.5194/HESS-19-877-2015

    Article  Google Scholar 

  9. Asadieh, B., Krakauer, N.Y., and Fekete, B.M., Historical trends in mean and extreme runoff and streamflow based on observations and climate models, Water, 2016, vol. 8, p. 189. https://doi.org/10.3390/w8050189

    Article  Google Scholar 

  10. Barbero, R., Fowler, H.J., Lenderink, G., and Blenkinsop, S., Is the intensification of precipitation extremes with global warming better detected at hourly than daily resolutions? Geophys. Res. Lett., 2017, vol. 44, pp. 974–983, doi: GL071917https://doi.org/10.1002/2016

  11. Bardin, M.Yu., Arzhanova, N.M., Gavrilova, S.Yu., Georgievsky, V.Yu., Gruz, G.V., Davletshin, S.G., Dementieva, T.V., Dokukin, M.D., Zhuravlev, A., Zadvornykh, V.A., Ivakhov, V.M., Korshunova, N.N., Paramonova, N.N., Platova, T.V., Rankova, E.Ya., Rusina, E.N., Samokhina, O.F., Solomatnikova, A.A., Khlebnikova, E.I., and Sherstyukov, A.B., Climate change in the Russian Federation. 1.2.1 Observable changes, The Third Aassessment Report on Climate Change and its consequences on the territory of the Russian Federation, V. M. Kattsov, Ed., Roshydromet.–St. Petersburg: Science-intensive technologies, 2022, pp. 61–109.

  12. Barredo, J.I., Normalised flood losses in Europe: 1970–2006, Nat. Hazards Earth Syst. Sci., 2009, vol. 9, pp. 97–104.

    Article  Google Scholar 

  13. Berghuijs, W.R. et al., Recent changes in extreme floods across multiple continents, Environ. Res. Lett., 2017, vol. 12, no.11, pp. 114035. https://doi.org/10.1088/1748-9326/aa8847

    Article  Google Scholar 

  14. Blöschl, G., et al., Increasing river floods: Fiction or reality? Wiley Interdisciplinary Reviews: Water., 2015, vol. 2. https://doi.org/10.1002/wat2.1079

  15. Blöschl, G., et al., Changing climate shifts timing of European floods, Science, 2017, vol. 357, no. 6351, pp. 588−590. https://doi.org/10.1126/science.aan2506

    Article  Google Scholar 

  16. Bond, N.R., Burrows, R.M., Kennard, M.J., and Bunn, S.E., Chapter 6 – Water Scarcity as a Driver of Multiple Stressor Effects, Multiple Stressors in River Ecosystems, Sabater, S., A., Elosegi, and Ludwig, R., Eds., Elsevier, 2019, pp. 111–129.

  17. Boretti, A. and Rosa, L., Reassessing the projections of the World Water Development Report, npj Clean Water, 2019, vol. 2(1), no. 15. https://doi.org/10.1038/s41545-019-0039-9

  18. Brigode, P., Oudin, L., and Perrin, C., Hydrological model parameter instability: a source of additional uncertainty in estimating the hydrological impacts of climate change? J. Hydrol., 2013, vol. 476, pp. 410–425. doi: . 2012.11.012https://doi.org/10.1016/j.jhydrol

  19. Bring, A. et al., Arctic terrestrial hydrology: A synthesis of processes, regional effects and research challenges, J. Geophys. Res. Biogeosci., 2016, vol. 121, no. 3, pp. 621–649. https://doi.org/10.1002/2015JG003131

    Article  Google Scholar 

  20. Burn, D.H., Whitfield, P.H., and Sharif, M., Identification of changes in floods and flood regimes in Canada using a peaks over threshold approach, Hydrol. Process., 2016, vol. 30, no. 18, pp. 3303-3314. https://doi.org/10.1002/hyp.10861

    Article  Google Scholar 

  21. Buttle, J.M. et al., Flood processes in Canada: Regional and special aspects, Can. Water Resour. J. Rev. Can. des Ressou. Hydriques, 2016, vol. 41, pp. 7–30. https://doi.org/10.1080/07011784.2015.1131629

    Article  Google Scholar 

  22. Buytaert, W. et al., Glacial melt content of water use in the tropical Andes, Environ. Res. Letters, 2017, vol. 12, no. 11, pp. 114014.

    Article  Google Scholar 

  23. Caretta, M.A., Mukherji, A., Arfanuzzaman, M., Betts, R.A., Gelfan, A., Hirabayashi, Y., Lissner, T.K., Liu, J., Lopez Gunn, E., Morgan, R., Mwanga, S., and Supratid, S., Water, Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, H.-O. Portner et al., Eds., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2022a, pp. 551–712. https://doi.org/10.1017/9781009325844.006

  24. Caretta, M.A., Mukherji, A., Arfanuzzaman, M., Betts, R.A., Gelfan, A., Hirabayashi, Y., Lissner, T.K., Liu, J., Lopez Gunn, E., Morgan, R., Mwanga, S., and Supratid, S., Water Supplementary Material, Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, H.-O. Pörtner et al., Eds., 2022b. Available from https://www.ipcc.ch/report/ar6/wg2/

  25. Chen, Z. and Grasby, S.E., Impact of decadal and century-scale oscillations on hydroclimate trend analyses, J. Hydrol., 2009, vol. 365, nos. 1–2, pp. 122–133. https://doi.org/10.1016/j.jhydrol.2008.11.031

    Article  Google Scholar 

  26. Chernomorets, S.S. et al., The outburst of Bashkara glacier lake (Central Caucasus, Russia) on September 1, 2017, Earth’s Cryosphere, 2018, vol. 22, no. 2, pp. 61–70.

    Google Scholar 

  27. Clark, E.A., Sheffield, J., van Vliet, M.T.H., Nijssen, B., and Lettenmaier, D.P., Continental runoff into the oceans (1950–2008), J. Hydrometeor., 2015, vol. 16, pp. 1502–1520. https://doi.org/10.1175/JHM-D-14-0183.1

    Article  Google Scholar 

  28. Cunderlik, J.M. and Burn, D.H., Linkages between regional trends in monthly maximum flows and selected climatic variables, J. Hydrol. Eng., 2004, vol. 9, pp. 246–256.

    Article  Google Scholar 

  29. Dai, A., Historical and future changes in streamflow and continental runoff: a review, Terrestrial Water Cycle and Climate Change: Natural and Human-Induced Impacts, Tang Q. and Oki, T., Eds., American Geophysical Union, Washington, D.C., 2016, pp. 17–37.

    Google Scholar 

  30. Danilov-Danil’yan, V.I. and Gel’fan, A.N., Water security. Federal Handbook No. 29 National Security of Russia, 2015, vol. 2, Implementation of Strategic National Priorities, Regional and International Cooperation, pp. 269–275.

  31. Dankers R., et al., First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project Ensemble, Proc. Natl Acad. Sci., March 4, 2014, Potsdam, Germany, Schellnhuber, H.J., Ed., pp. 3257–3261.

  32. Davenport, F., Burke, M., and Diffenbaugh, N., Contribution of historical precipitation change to US flood damages, Proc. National Acad. Sci., 2021, vol. 118. pp. e2017524118. https://doi.org/10.1073/pnas.2017524118

    Article  Google Scholar 

  33. de Coninck, H., Revi, A., Babiker, M., Bertoldi, P., Buckeridge, M., Cartwright, A., Dong, W., Ford, J., Fuss, S., Hourcade, J.-C., Ley, D., Mechler, R., Newman, P., Revokatova, A., Schultz, S., Steg, L., and Sugiyama, T., Strengthening and Implementing the Global Response, Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, V. MassonDelmotte, et al., Eds., IPCC, 2018. Chapter 4, pp. 313–443.

  34. DeBeer, C.M., Wheater, H.S., Carey, S.K., and Chun, K.P., Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: a review and synthesis, Hydrol. Earth Syst. Sci., 2016, vol. 20, pp. 1573–1598. https://doi.org/10.5194/hess-20-1573-2016

    Article  Google Scholar 

  35. Dey, P. and Mishra, A., Separating the impacts of climate change and human activities on streamflow: A review of methodologies and critical assumptions, J. Hydrol., 2017, vol. 548, pp. 278−290. https://doi.org/10.1016/j.jhydrol.2017.03.014

    Article  Google Scholar 

  36. Do, H.X., Westra, S., and Leonard, M., A global-scale investigation of trends in annual maximum streamflow, J. Hydrol., 2017, vol. 552, pp. 28–43. https://doi.org/10.1016/j.jhydrol.2017.06.015

    Article  Google Scholar 

  37. Doell, P. et al., Integrating risks of climate change into water management, Hydrol. Sci. J., 2015, vol. 60, no. 1, pp. 4–13. https://doi.org/10.1080/02626667.2014.967250

    Article  Google Scholar 

  38. Dzhamalov, R.G., Frolova, N.L., Kireeva, M.B., Rec, E.P., Safronova, T.I., Bugrov, A.A., Telegi-na, A.A., Telegina, E.A., Present Water Resources of the European Part of Russia: Formation, Distribution, Use, Moscow: GEOS, 2015 (in Russian).

    Google Scholar 

  39. Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., and Liebert, J., HESS Opinions “Should we apply bias correction to global and regional climate model data?”, Hydrol. Earth Syst. Sci., 2012, vol. 16, pp. 3391–3404. https://doi.org/10.5194/hess-16-3391-2012

    Article  Google Scholar 

  40. Eisner, S. et al., An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins, Climatic Change, 2017, vol. 141, no. 3, pp. 401–417.

    Article  Google Scholar 

  41. Etter, S., Addor, N., Huss, M., and Finger, D., Climate change impacts on future snow, ice and rain runoff in a Swiss mountain catchment using multi-dataset calibration, J. Hydrol.: Regional Studies, 2017, vol. 13, pp. 222–239. https://doi.org/10.1016/j.ejrh.2017.08.005

    Article  Google Scholar 

  42. Farinosi, F. et al., An innovative approach to the assessment of hydro-political risk: A spatially explicit, data driven indicator of hydro-political issues, Global Environ. Change, 2018, vol. 52, pp. 286−313. https://doi.org/10.1016/j.gloenvcha.2018.07.001

    Article  Google Scholar 

  43. Ficklin, D.L., Abatzoglou, J.T., Robeson, S.M., Null, S.E., and Knouft, J.H., Natural and managed watersheds show similar responses to recent climate change, PNAS August 21, 2018, Oakland, CA, Gleick P.H., Ed., pp. 8553–8557. https://doi.org/10.1073/pnas.1801026115

    Book  Google Scholar 

  44. Ficklin, D.L., Letsinger, S.L., Stewart, I.T., and Maurer, E.P., Assessing differences in snowmelt-dependent hydrologic projections using CMIP3 and CMIP5 climate forcing data for the western United States, Hydrol. Res., 2015, vol. 47, no. 2, pp. 483–500. https://doi.org/10.2166/nh.2015.101

    Article  Google Scholar 

  45. Forbes, W.L. et al., Contribution of environmental forcings to US runoff changes for the period 1950–2010, Environ. Res. Lett., 2018, vol. 13, pp. 054023. https://doi.org/10.1088/1748-9326/aabb41

    Article  Google Scholar 

  46. Frank, D.C. et al., Water-use efficiency and transpiration across European forests during the Anthropocene, Nature Climate Change, 2015, vol. 5, p. 579. https://doi.org/10.1038/nclimate2614

    Article  Google Scholar 

  47. Frolova, N.L., Magritskii, D.V., Kireeva, M.B., et al., Streamflow of Russian rivers under current and forecasted climate changes: a review of publications, 1. Assessment of changes in the water regime of Russian rivers by observation data, Water Resour., 2022, vol. 49, pp. 333–350. https://doi.org/10.1134/S0097807822030046

    Article  Google Scholar 

  48. Frolova, N.L., Kireeva, M.B., Harlamov, M.A., Samsonov, T.E., Entin, A.L., and Lur’e, I.K., Mapping the current state and transformation of the water regime of rivers in the European territory of Russia, Geodez. Kartogr., 2020, vol. 81, no. 7, pp. 14–26 (in Russian).

    Google Scholar 

  49. Frolova, N., Agafonova, S., Kireeva, M., Povalishnikova, E., and Pakhomova, O., Recent changes of annual flow distribution of the Volga basin rivers, Geogr. Environ., Sustain., 2017a, vol. 10, no. 2, pp. 28−39. https://doi.org/10.24057/2071-9388-2017-10-2-28-39

    Article  Google Scholar 

  50. Frolova, N.L. et al., Runoff fluctuations in the Selenga River Basin. Reg. Environ. Change., 2017b, vol. 17, no. 7, pp. 1965−1976. https://doi.org/10.1007/s10113-017-1199-0

    Article  Google Scholar 

  51. Frolova, N., et al., Hydrological hazards in Russia: origin, classification, changes and risk assessment, Natur. Hazards, 2017c, vol. 88. pp. 1–29. https://doi.org/10.1007/s11069-016-2632-2

    Article  Google Scholar 

  52. Gain, A.K., Giupponi, C., and Wada, Y., Measuring global water security towards sustainable development goals, Environ. Res. Lett., 2016, vol. 11, no. 12, pp. 124015. https://doi.org/10.1088/1748-9326/11/12/124015

    Article  Google Scholar 

  53. Gelfan, A., Semenov, V.A., Gusev, E., Motovilov, Yu., Nasonova, O., Krylenko, I., and Kovalev, E., Large-basin hydrological response to climate model outputs: uncertainty caused by internal atmospheric variability, Hydrol. Earth Syst. Sci., 2015, vol. 19, pp. 2737–2754. https://doi.org/10.5194/hess-19-2737-2015

    Article  Google Scholar 

  54. Gelfan, A.N., Gusev, E.M., Kalugin, A.S., et al., Runoff of Russian rivers under current and projected climate change: A Review 2., Climate change impact on the water regime of Russian rivers in the XXI century, Water Resour., 2022, vol. 49, pp. 351–365. https://doi.org/10.1134/S0097807822030058

    Article  Google Scholar 

  55. Gelfan, A., Gustafsson, D., Motovilov, Yu., Arheimer, B., Kalugin, A., Krylenko, I., and Lavrenov, A., Climate change impact on the water regime of two great Arctic rivers: modeling and uncertainty issues, Climatic Change, 2017, vol. 141, pp. 499–515. https://doi.org/10.1007/s10584-016-1710-5

    Article  Google Scholar 

  56. Gelfan, A., Kalugin, A., and Motovilov, Yu., Assessing Amur water regime variations in the XXI Century with two methods used to specify climate projections in river runoff formation model. Water Resour., 2018, vol. 45, no. 3, pp. 307–317. https://doi.org/10.1134/S0097807818030065

    Article  Google Scholar 

  57. Gelfan, A., Kalugin, A., Krylenko, I., Nasonova, O., Gusev, Ye., and Kovalev, E., Does a successful comprehensive evaluation increase confidence in a hydrological model intended for climate impact assessment? Climatic Change, 2020, vol. 163, no. 3, pp. 1165–1185. https://doi.org/10.1007/s10584-020-02930-z

    Article  Google Scholar 

  58. Georgievskij, V.Yu., Georgievskij, M.V., Golovanov, O.F., and Shalygin, A.L., Land water systems, Chapter 4.1 of The Second Roshydromet Assessment Report on Climate Change and Its Consequences in the Russian Federation, Moscow: Rosgidromet, 2014, pp. 350–361.

  59. Georgievskij, V.Yu., Grek, E.A., Grek, E.N., Lobanova, A.G., and Molchanova, T.G., Assessment of modern changes in maximum river flow in Russia, Russ. Meteorol. Hydrol, 2019, no. 11, pp. 739–745.

  60. Giorgi, F., Raffaele, F., and Coppola, E., The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dynam., 2019, vol. 10, no. 1, pp. 73–89. https://doi.org/10.5194/esd-10-73-2019

    Article  Google Scholar 

  61. Gosling, S.N. et al., A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1, 2, and 3°C, Climatic Change, 2017, vol. 141, pp. 577–595. https://doi.org/10.1007/s10584-016-1773-3

    Article  Google Scholar 

  62. Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., and Seneviratne, S.I., Global assessment of trends in wetting and drying over land, Nat. Geosci., 2014, vol. 7, pp. 716–721. https://doi.org/10.1038/ngeo2247

    Article  Google Scholar 

  63. Groisman, P.Ya., Knight, R. W., Easterling, D.R., Kar, T.R., Hegerl, G.C., and Razuvaev, V.A.N., Trends in intense precipitation in the climate record, J. Climate, 2005, vol. 18, pp. 1326–1350. https://doi.org/10.1175/JCLI3339.1

    Article  Google Scholar 

  64. Gudmundsson, L., Boulange, J., Do, H.X., Gos-ling, S.N., Grillakis, M.G., Koutroulis, A.G., Leonard, M., Liu, J., Schmied, H.M., Papadimitriou, L., Pokhrel, Y., Seneviratne, S.I., Satoh, Y., Thiery, W., Westra, S., Zhang, X., and Zhao, F., Globally observed trends in mean and extreme river flow attributed to climate change. Science, 2021, vol. 371, pp. 1159–1162.

    Article  Google Scholar 

  65. Hall, J. et al., Understanding flood regime changes in Europe: a state-of-the-art assessment, Hydrol. Earth Syst. Sci., 2014, vol. 18, pp. 2735–2772. https://doi.org/10.5194/hess-18-2735-2014

    Article  Google Scholar 

  66. Hamlet, A.F., New observed data sets for the validation of hydrology and land surface models in cold climates, Water Resour. Res., 2018, vol. 54, pp. 5190–5197. https://doi.org/10.1029/2018WR023123

    Article  Google Scholar 

  67. Hannaford, J., Buys, G., Stahl, K., and Tallaksen, L.M., The influence of decadal-scale variability on trends in European streamflow records, Hydrol. Earth Systems Sci., 2013, vol. 17, pp. 2717–2733.

    Article  Google Scholar 

  68. Hannaford J., Climate-driven changes in UK river flows: A review of the evidence, Prog. Phys. Geogr., 2015, vol. 39, no. 1, pp. 29–48. https://doi.org/10.1177/0309133314536755

    Article  Google Scholar 

  69. Hartmann, D. L., et al., Observations: Atmosphere and surface, Climate Change 2013: The Physical Science Basis, Stocker, T.F., et al., Eds., Cambridge Univ. Press, 2013, pp. 159–254.

    Google Scholar 

  70. Hattermann, F.F. et al., Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Clim. Change, 2017, vol. 141, pp. 561–576. https://doi.org/10.1007/s10584-016-1829-4

    Article  Google Scholar 

  71. Hawkins, E. and Sutton, R., The potential to narrow uncertainty in regional climate predictions, B. Am. Meteorol. Soc., 2009, vol. 90, pp. 1095–1107. https://doi.org/10.1175/2009BAMS2607.1

    Article  Google Scholar 

  72. Hirabayashi, Y. et al., Global flood risk under climate change, Nat. Clim. Change, 2013, vol. 3, pp. 816–821. https://doi.org/10.1038/nclimate1911

    Article  Google Scholar 

  73. Hock, R. et al., High mountains, in IPCC Special Report on Cryopshere and Oceans in a Changing Climate, H.-O. Pörtner , Eds., Cambridge, UK; New York, NY, USA: Cambridge Univ. Press, 2019, pp. 131–202. https://doi.org/10.1017/9781009157964.004

    Book  Google Scholar 

  74. Hoegh-Guldbergg, M., et al., Impacts of 1.5ºC Global Warming on Natural and Human Systems, Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Masson-Delmotte, V., et al., Eds., IPCC, 2018, Chapter 3, pp. 175–311.

  75. The Inter-Sectoral Impact Model Intercomparison Project. https://www.isimip.org/.

  76. The Global Risks Report 2020. https://www.weforum.org/reports/the-global-risks-report-2020/

  77. Huang S., et al., Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide, Climatic Change, 2017, vol. 141, pp. 381–397. https://doi.org/10.1007/s10584-016-1841-8

    Article  Google Scholar 

  78. Hugonnet, R. et al., Accelerated global glacier mass loss in the early twenty-first century, Nature, 2021, vol. 592, pp. 726–731. https://doi.org/10.1038/s41586-021-03436-z

    Article  Google Scholar 

  79. Huss, M. and Fischer, M., Sensitivity of very small glaciers in the Swiss Alps to future climate change. Front. Earth Sci., 2016, vol. 4, p. 34.

    Article  Google Scholar 

  80. Ikeda, N., Narama, C., and Gyalson, S., Knowledge sharing for disaster risk reduction: Insights from a glacier lake workshop in the Ladakh Region, Indian Himalayas, Mountain Res. Development, 2016, vol. 36, no. 1, pp. 31–40. https://doi.org/10.1659/MRD-JOURNAL-D-15-00035.1

    Article  Google Scholar 

  81. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker T.F., , Eds., Cambridge, United Kingdom; New York, NY, USA: Cambridge Univ. Press, 2013.

    Google Scholar 

  82. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte et al., Eds., Cambridge, United Kingdom and New York, NY, USA, Cambridge Univ. Press, 2021, 2391 p. https://doi.org/10.1017/9781009157896

  83. Islam, S.U., Curry, C.L., Déry, S.J., and Zwiers, F.W., Quantifying projected changes in runoff variability and flow regimes of the Fraser River Basin, British Columbia, Hydrol. Earth Syst. Sci., 2019, vol. 23, pp. 811–828. https://doi.org/10.5194/hess-23-811-2019

    Article  Google Scholar 

  84. Ivancic, T. and Shaw, S., Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge, Clim. Change, 2015, vol. 133, pp. 681–693. https://doi.org/10.1007/s10584-015-1476-1

    Article  Google Scholar 

  85. Jiménez Cisneros, B.E. et al., Freshwater resources, Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom; New York, NY, USA: Cambridge Univ. Press, 2014, pp. 229–269.

    Google Scholar 

  86. Joseph, J., Ghosh, S., Pathak, A., and Sahai, A.K., Hydrologic impacts of climate change: Comparisons between hydrological parameter uncertainty and climate model uncertainty, J. Hydrol., 2018, vol. 566, pp. 1–22. https://doi.org/10.1016/j.jhydrol.2018.08.080

    Article  Google Scholar 

  87. Kalugin, A., Climate change attribution in the Lena and Selenga river runoff: an evaluation based on the Earth system and regional hydrological models, Water, 2022, vol. 14, p. 118. https://doi.org/10.3390/w14010118

    Article  Google Scholar 

  88. Kalyuzhnyi, I.L. and Lavrov, S.A., Variability of frost depth in the Volga River basin and its impact on runoff formation in winter and spring under climate change, Russ. Meteorol. Hydrol., 2016, vol. 41, pp. 487–496. https://doi.org/10.3103/S1068373916070062

    Article  Google Scholar 

  89. Kinoshita, Y. et al., Quantifying the effect of autonomous adaptation to global river flood projections: application to future flood risk assessments, Environ. Res. Lett., 2018, vol. 13, no. 1, p. 014006. https://doi.org/10.1088/1748-9326/aa9401

    Article  Google Scholar 

  90. Kireeva, M., Frolova, N., Rets, E., Samsonov, T., Entin, A., Kharlamov, M., Telegina, E., and Povalishnikova, E., Evaluating climate and water regime transformation in the European Part of Russia using observation and reanalysis data for the 1945–2015 period, Int. J. River Basin Management, 2020, vol. 18, no. 4, pp. 1–12.

    Article  Google Scholar 

  91. Kirtman, B. et al., Near-term Climate Change: Projections and Predictability, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom; New York, NY, USA: Cambridge Univ. Press, 2013. Chapter 11, pp. 953–1028.

    Google Scholar 

  92. Klemeš, V., Operational testing of hydrological simulation models, Hydrological Sci. J., 1986, vol. 31, no. 1, pp. 13–24. https://doi.org/10.1080/02626668609491024

    Article  Google Scholar 

  93. Koirala, S., Hirabayashi, Y., Mahendran, R., and Kanae, S., Global assessment of agreement among streamflow projections using CMIP5 model outputs, Environ. Res. Lett., 2014, vol. 9, p. 064017. https://doi.org/10.1088/1748-9326/9/6/064017

    Article  Google Scholar 

  94. Komma, J., Reszler, C., Blöschl, G., and Haiden, T., Ensemble prediction of floods—catchment non-linearity and forecast probabilities, Nat Hazards Earth Syst. Sci., 2007, vol. 7, pp. 431–444.

    Article  Google Scholar 

  95. Kong. D., Miao. Ch., Wu. J., and Duan, Q., Impact assessment of climate change and human activities on net runoff in the Yellow River Basin from 1951 to 2012, Ecol. Eng., 2016, vol. 91, pp. 566–573. https://doi.org/10.1016/j.ecoleng.2016.02.023

    Article  Google Scholar 

  96. Kormann, C., Francke, T., Renner, M., and Bronstert, A., Attribution of high resolution streamflow trends in Western Austria—an approach based on climate and discharge station data, Hydrol. Earth Syst. Sci., 2015, vol. 19, no. 3, pp. 1225–1245. https://doi.org/10.5194/hess-19-1225-2015

    Article  Google Scholar 

  97. Kornilova, E.D., Krylenko, I.N., Rets, E.P., Motovilov, Y.G., Bogachenko, E.M., Krylenko, I.V., Petrakov, D.A., Modeling of extreme hydrological events in the Baksan River basin, the Central Caucasus, Russia, Hydrol., 2021, vol. 8, no 24. pp. 1–24, https://doi.org/10.3390/hydrology8010024

    Article  Google Scholar 

  98. Krogh, S.A. and Pomeroy, J.W., Recent changes to the hydrological cycle of an Arctic basin at the tundra–taiga transition, Hydrol. Earth Syst. Sci., 2018, vol. 22, pp. 3993–4014, https://doi.org/10.5194/hess-22-3993-2018

    Article  Google Scholar 

  99. Krysanova, V. et al., Intercomparison of regional-scale hydrological models and climate change impacts projected for 12 large river basins worldwide—a synthesis, Environ. Res. Lett., 2017, vol. 12, p. 105002. https://doi.org/10.1088/1748-9326/aa8359

    Article  Google Scholar 

  100. Krysanova, V., Hattermann, F.F., Intercomparison of climate change impacts in 12 large river basins: overview of methods and summary of results, Climatic Change, 2017, vol. 141, pp. 363–379. https://doi.org/10.1007/s10584-017-1919-y

    Article  Google Scholar 

  101. Krysanova, V., Donnelly, C., Gelfan, A., Gerten, D., Arheimer, B., Hattermann, F., and Kundze-wicz, Z.W., How the performance of hydrological models relates to credibility of projections under climate change, Hydrol. Sci. J., 2018, vol. 63, no. 5, pp. 696–720. https://doi.org/10.1080/02626667.2018.1446214

    Article  Google Scholar 

  102. Kumar, S., Allan, R.P., Zwiers, F., Lawrence, D.M., and Dirmeyer, P.A., Revisiting trends in wetness and dryness in the presence of internal climate variability and water limitations over land, Geophys. Res. Lett., 2015, vol. 42, no. 10 pp. 867–10 875. https://doi.org/10.1002/2015GL066858

  103. Kundzewicz, Z.W. and Robson, A.J., Change detection in hydrological records—a review of the methodology, HSJ, 2004, vol. 49, no. 1, pp. 7–19. https://doi.org/10.1623/hysj.49.1.7.53993

    Article  Google Scholar 

  104. Kundzewicz, Z.W., et al., The implications of projected climate change for freshwater resources and their management, Hydrol. Sci. J., 2008, vol. 53, no. 1, pp. 3–10.

    Article  Google Scholar 

  105. Kundzewicz, Z.W. et al., Flood risk and climate change: global and regional perspectives, Hydrol. Sci. J., 2014, vol. 59, no. 1, pp. 1–28. https://doi.org/10.1080/02626667.2013.857411

    Article  Google Scholar 

  106. Kundzewicz, Z.W. et al., Differences in flood hazard projections in Europe – their causes and consequences for decision making, Hydrol. Sci. J., 2017, vol. 62, no. 1, pp. 1–14. https://doi.org/10.1080/02626667.2016.1241398

    Article  Google Scholar 

  107. Kundzewicz, Z.W. et al., Assessment of climate change and associated impact on selected sectors in Poland, Acta Geophysica, 2018a, vol. 66, no. 6, pp. 1509–1523. https://doi.org/10.1007/s11600-018-0220-4

    Article  Google Scholar 

  108. Kundzewicz, Z.W., et al., Uncertainty in climate change impacts on water resources, Environ. Sci. Policy, 2018b, vol. 79, pp. 1−8. https://doi.org/10.1016/j.envsci.2017.10.008

    Article  Google Scholar 

  109. Leng, et al., Emergence of new hydrologic regimes of surface water resources in the conterminous United States under future warming, Environ. Res. Lett., 2016, vol. 11, p. 114003. https://doi.org/10.1088/1748-9326/11/11/114003

    Article  Google Scholar 

  110. Li, L. et al., Global trends in water and sediment fluxes of the world’s large rivers, Sci. Bull., 2020, vol. 65, no. 1, pp. 62–69.

    Article  Google Scholar 

  111. Li, W., Jiang, Z.H., Zhang, X, and Li, L., On the emergence of anthropogenic signal in extreme precipitation change over China, Geophys. Res. Lett., 2018, vol. 45, pp. 9179–9185. https://doi.org/10.1029/2018GL079133

    Article  Google Scholar 

  112. Liu, C. and Allan, R.P., Observed and simulated precipitation responses in wet and dry regions 1850–2100, Environ. Res. Lett., 2013, vol. 8, p. 034002.

    Article  Google Scholar 

  113. Liu, L. and Du, J., Documented changes in annual runoff and attribution since the 1950s within selected rivers in China, Adv. Clim. Change Res., 2017, vol. 8, pp. 37–47. https://doi.org/10.1016/j.accre.2017.03.005

    Article  Google Scholar 

  114. Lobanova, A. et al., Hydrological impacts of moderate and high-end climate change across European river basins, J. Hydrol.: Regional Studies, 2018, vol. 18, pp. 15–30. https://doi.org/10.1016/j.ejrh.2018.05.003

    Article  Google Scholar 

  115. Lu J. et al., Enhanced hydrological extremes in the western United States under global warming through the lens of water vapor wave activity, Climate Atmos. Sci., 2018, vol. 1, p. 7. https://doi.org/10.1038/s41612-017-0007-3

    Article  Google Scholar 

  116. Lutz, A.F. et al., Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation, Nat. Clim. Change, 2014, vol. 4, p. 587. https://doi.org/10.1038/nclimate2237

    Article  Google Scholar 

  117. Magritsky, D.V., Frolova, N.L., Evstigneev, V.M., Povalishnikova, E.S., Kireeva, M.B., and Pakhomova, O.M., Long-term changes of river water inflow into the seas of the Russian Arctic sector, Polarforschung, 2018, vol. 87, no. 2, pp. 177–194.

    Google Scholar 

  118. Mallakpour, I. and Villarini, G., The changing nature of flooding across the central United States, Nat. Clim. Change, 2015, vol. 5, p. 250. https://doi.org/10.1038/nclimate2516

    Article  Google Scholar 

  119. Mankin, J.S. and Diffenbaugh, N.S., Influence of temperature and precipitation variability on near-term snow trends, Clim. Dynamics, 2015, vol. 45, no. 3, pp. 1099–1116. https://doi.org/10.1007/s00382-014-2357-4

    Article  Google Scholar 

  120. Mao, J. et al., Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends, Environ. Res. Lett., 2015, vol. 10, no. 9, p. 094008. https://doi.org/10.1088/1748-9326/10/9/094008

    Article  Google Scholar 

  121. Matti, B., Dahlke, H.E., and Lyon, S.W., On the variability of cold region flooding. J. Hydrol., 2016, vol. 534, pp. 669–679. https://doi.org/10.1016/j.jhydrol.2016.01.055

    Article  Google Scholar 

  122. Mekonnen, M.M. and Hoekstra, A.Y., Four billion people facing severe water scarcity, Sci. Advances, 2016, vol. 2, no. 2, p. e1500323. https://doi.org/10.1126/sciadv.1500323

    Article  Google Scholar 

  123. Meredith, E.P., Semenov, V.A., Maraun, D., Park, W., and Chernokulsky, A.V., Crucial role of Black Sea warming in amplifying the 2012 Krymsk precipitation extreme, Nat. Geosci., 2015, vol. 8, pp. 615–620. https://doi.org/10.1038/NGEO2483

    Article  Google Scholar 

  124. Merz, B., Vorogushyn, S., Uhlemann, S., et al., More efforts and scientific rigour are needed to attribute trends in flood time series, Hydrol. Earth Syst. Sci., 2012, vol. 16, pp. 1379–1387. https://doi.org/10.5194/hess-16-1379-2012

    Article  Google Scholar 

  125. Milly, P.C.D., et al., Stationarity is dead: whither water management? Science, 2008, vol. 319, pp. 573–574.

    Article  Google Scholar 

  126. Mishra, A. and Coulibaly, P., Developments in hydrometric network design: A review, Rev. Geophys., 2009, vol. 4, iss. 2. https://doi.org/10.1029/2007RG000243

  127. Morán-Tejeda E. et al., Streamflow timing of mountain rivers in Spain: Recent changes and future projections, J. Hydrol., 2014, vol. 517, pp. 1114–1127. https://doi.org/10.1016/j.jhydrol.2014.06.053

    Article  Google Scholar 

  128. Motovilov, Yu. and Gelfan, A., Assessing runoff sensitivity to climate change in the Arctic basin: empirical and modelling approaches, Cold and Mountain Region Hydrological Systems under Climate Change: Towards Improved Projections, Gelfan, A., Eds. IAHS Publications, 2013, vol. 360, pp. 105–112.

    Google Scholar 

  129. Motovilov, Yu. and Gelfan, A., Models of Runoff Formation in Problems of Watershed Hydrology, Moscow, RAS Publ., 2013, (in Russian)https://doi.org/10.31857/S9785907036222000001

    Book  Google Scholar 

  130. Mudryk, L., Santolaria-Otín, M., Krinner, G. et al., Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble. The Cryosphere, 2020, vol. 14, no. 7, pp. 2495–2514.

    Article  Google Scholar 

  131. Mugagga, F. and Nabaasa, B.B., The centrality of water resources to the realization of Sustainable Development Goals (SDG). A review of potentials and constraints on the African continent, Int. Soil Water Conservation Res., 2016, vol. 4, no. 3, pp. 215–223. https://doi.org/10.1016/j.iswcr.2016.05.004

    Article  Google Scholar 

  132. Musselman, K.N., et al., Projected increases and shifts in rain-on-snow flood risk over western North America, Nat. Clim. Change, 2018, vol. 8, no. 9, pp. 808–812.

    Article  Google Scholar 

  133. Najibi, N. and Devineni, N., Recent trends in the frequency and duration of global floods, Earth Syst. Dynam., 2018, vol. 9, no. 2, pp. 757–783. https://doi.org/10.5194/esd-9-757-2018

    Article  Google Scholar 

  134. Nasonova, O.N., Gusev, Ye.M., Volodin, E.M., and Kovalev, E.E., Application of the land surface model SWAP and global climate model INMCM4.0 for projecting runoff of northern Russian rivers, 2. Projections and their uncertainties, Water Resour., 2018, vol. 45. Suppl. 2, pp. 85–92. https://doi.org/10.1134/S0097807818060271

    Article  Google Scholar 

  135. NRC. Global Change and Extreme Hydrology: Testing Conventional Wisdom, Washington, D.C.: The National Acad. Press, 2011.

  136. Nüsser, M. and Schmidt, S., Nanga Parbat revisited: evolution and dynamics of sociohydrological interactions in the Northwestern Himalaya, Annals Am. Association Geogr., 2017, vol. 107, no. 2, pp. 403–415. https://doi.org/10.1080/24694452.2016.1235495

    Article  Google Scholar 

  137. Osborne, J.M. et al., Reconciling precipitation with runoff: observed hydrological change in the midlatitudes, J. Hydrometeorol., 2015, vol. 16, pp. 2403–2420, https://doi.org/10.1175/JHM-D-15-0055.1

    Article  Google Scholar 

  138. Pavlova, T.V., Govorkova, V.A., Meleshko, V.P., Khlebnikova, E.I., and Shkolnik, I.M., Climate Change in the Russian Federation. 1.2.2 Projected Changes, The Third Assessment Report on Climate Change and Its Consequences on the Territory of the Russian Federation, Kattsov, V.M., Ed., Roshydromet, St. Petersburg: Science-Intensive Technologies, 2022, pp. 110–136.

  139. Pechlivanidis, I.G. et al., Analysis of hydrological extremes at different hydro-climatic regimes under present and future conditions, Clim. Change, 2017, vol. 141, pp. 467–481. https://doi.org/10.1007/s10584-016-1723-0

    Article  Google Scholar 

  140. Perks, A., Winkler, T., and Stewart, B., The Adequacy of Hydrological Networks: A Global Assessment, Rep. WMO-740, World Meteorol. Organ., Geneva, Switzerland, 1996.

  141. Pinter, N.J.H., et al., Flood magnification on the River Rhine, Hydrol. Process., 2006, vol. 20, pp. 147–164.

    Article  Google Scholar 

  142. Pritchard, H.D., Asia’s shrinking glaciers protect large populations from drought stress, Nature, 2019, vol. 569, pp. 649–654. https://doi.org/10.1038/s41586-019-1240-1

    Article  Google Scholar 

  143. Rets E., et al., Recent trends of river runoff in the North Caucasus, Geogr., Environ., Sustain., 2018, vol. 11, pp. 61–70. https://doi.org/10.24057/2071-9388-2018-11-3-61-70

    Article  Google Scholar 

  144. Rets, E. et al., Past ‘peak water’ in the North Caucasus: deglaciation drives a reduction in glacial runoff impacting summer river runoff and peak discharges, Clim. Change, 2020, vol. 163, no. 4, pp. 2135–2151.

    Article  Google Scholar 

  145. Review of the State of the Hydrological Observation System, Data Processing and Preparation of Information Products in 2016, Reference edition, Roshydromet, 2017.

  146. Rokaya, P., Budhathoki, S., and Lindenschmidt, K.-E., Trends in the timing and magnitude of ice-jam floods in Canada, Sci. Rep., 2018, vol. 8, pp. 5834. https://doi.org/10.1038/s41598-018-24057-z

    Article  Google Scholar 

  147. Schaefli, B. et al., The role of glacier retreat for Swiss hydropower production, Renewable Energy, 2019, vol. 132, pp. 615–627. https://doi.org/10.1016/j.renene.2018.07.104

    Article  Google Scholar 

  148. Schewe J. et al., Multimodel assessment of water scarcity under climate change, in: Proc. Natl Acad. Sci., March 4, 2014, Potsdam, Germany, H.J. Schellnhuber, Ed., pp. 3245–3250. https://doi.org/10.1073/pnas.1222460110

  149. Schröder, M. et al., The GEWEX water vapor assessment: Results from intercomparison, trend, and homogeneity analysis of total column water vapor, J. Applied Meteorol. Climatol., 2016, vol. 55, no. 7, pp. 1633–1649. https://doi.org/10.1175/jamc-d-15-0304.1

    Article  Google Scholar 

  150. Scussolini, P. et al., FLOPROS: an evolving global database of flood protection standards, Nat. Hazards Earth Syst. Sci., 2016, vol. 16, no. 5, pp. 1049–1061. https://doi.org/10.5194/nhess-16-1049-2016

    Article  Google Scholar 

  151. Settele, J. et al., Terrestrial and inland water systems, Climate Change 2014: Impacts, Adaptation, and Vulnerability. Pt A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, C.B. Field, Eds., Cambridge, United Kingdom; New York, NY, USA: Cambridge Univ. Press, 2014, pp. 271–359.

    Google Scholar 

  152. Sharma, A., Wasko, C., and Lettenmaier, D., If precipitation extremes are increasing, why aren’t floods? Water Resour. Res., 2018, vol. 54, issue 11, pp. 8545–8551. https://doi.org/10.1029/2018WR023749

    Article  Google Scholar 

  153. Sheffield, J., Wood, E. F., and Roderick, M.L., Little change in global drought over the past 60 years, Nature, 2012, vol. 491, pp. 435–438. https://doi.org/10.1038/nature11575

    Article  Google Scholar 

  154. Shi, X., et al., Changes in major global river discharges directed into the ocean, In. J. Environ. Res. Public Health, 2019, vol. 16, no. 8, pp. 1469.

    Article  Google Scholar 

  155. Shiklomanov, A. et al., River freshwater flux to the Arctic Ocean., Arctic Hydrol., Permafrost Ecosystems, Springer, Cham., 2020, pp. 703–738.

    Google Scholar 

  156. Shkolnik, I., Pavlova, T., Efimov, S., and Zhuravlev, S., Future changes in peak river flows across northern Eurasia as inferred from an ensemble of regional climate projections under the IPCC RCP8.5 scenario, Climate Dynam., 2018, vol. 50, pp. 215–230. https://doi.org/10.1007/s00382-017-3600-6

    Article  Google Scholar 

  157. Shugar, D.H., et al., Rapid worldwide growth of glacial lakes since 1990, Nat. Clim. Chang., 2020, vol. 10, no. 10, pp. 1–7. https://doi.org/10.1038/s41558-020-0855-4

    Article  Google Scholar 

  158. Singh, D., et al., Indian summer monsoon: Extreme events, historical changes, and role of anthropogenic forcings, Wiley Interdisciplinary Reviews: Climate Change, 2019, vol. 10 (2), p. e571. https://doi.org/10.1002/wcc.571

    Article  Google Scholar 

  159. Skinner C.B. et al., The role of plant CO2 physiological forcing in shaping future daily-scale precipitation, J. Climate, 2017, vol. 30, no. 7, pp. 2319–2340. https://doi.org/10.1175/jcli-d-16-0603.1

    Article  Google Scholar 

  160. Solander, K.C., Bennett, K.E., and Middleton, R.S., Shifts in historical streamflow extremes in the Colorado River Basin, J. Hydrol.-Region. Studies, 2017, vol. 12, pp. 363–377. https://doi.org/10.1016/j.ejrh.2017.05.004

    Article  Google Scholar 

  161. Soruco, A. et al., Contribution of glacier runoff to water resources of La Paz city, Bolivia (16° S), Annals Glacio-l., 2015, vol. 56, no. 70, pp. 147–154. https://doi.org/10.3189/2015AoG70A001

    Article  Google Scholar 

  162. Stagl, J., et al., Effects of climate change on the hydrological cycle in Central and Eastern Europe, managing protected areas in Central and Eastern Europe under climate change, Advances in Global Change Research, Rannow, S. and Neubert, M., Eds., Springer, Dordrecht, 2014, vol. 58, pp. 31–43.

    Google Scholar 

  163. Su, B. et al., Impacts of climate change on streamflow in the upper Yangtze River basin, Clim. Change, 2017, vol. 141, pp. 533–546. https://doi.org/10.1007/s10584-016-1852-5

    Article  Google Scholar 

  164. Sun, Q. et al., A global, continental, and regional analysis of changes in extreme precipitation, J. Climate, 2020, vol. 34. pp. 243–258. https://doi.org/10.1175/JCLI-D-19-0892.1

    Article  Google Scholar 

  165. Tananaev, N., Makarieva, O., and Lebedeva, L., Trends in annual and extreme flows in the Lena River basin, Northern Eurasia. Geophys. Res. Lett., 2016, vol. 43, no. 20, pp. 10764–10772. https://doi.org/10.1002/2016GL070796

    Article  Google Scholar 

  166. Tanoue, M., Hirabayashi, Y., and Ikeuchi, H., Global-scale river flood vulnerability in the last 50 years, Sci. Rep., 2016, vol. 6, pp. 36021. https://doi.org/10.1038/srep36021

    Article  Google Scholar 

  167. Teklesadik, A.D., et al., Inter-model comparison of hydrological impacts of climate change on the Upper Blue Nile basin using ensemble of hydrological models and global climate models, Climatic Change, 2017, vol. 141, pp. 517–532. https://doi.org/10.1007/s10584-017-1913-4

    Article  Google Scholar 

  168. Tramblay, Y. et al., Detection and attribution of flood trends in Mediterranean basins, Hydrol. Earth Syst. Sci., 2019, vol. 23, pp. 4419–4431. https://doi.org/10.5194/hess-23-4419-2019

    Article  Google Scholar 

  169. UN-Water. What is Water Security? Infographic, (October 2013), 2013, Retrieved from http://www.unwater.org/publications/water-security-infographic/

  170. USGCRP Climate Science Special Report: Fourth National Climate Assessment, Volume I, Wuebbles, D.J. , Eds., U.S. Global Change Research Program, Washington, DC, USA, 2017. https://doi.org/10.7930/J0J964J6

    Book  Google Scholar 

  171. Vano, J.A. and Lettenmaier, D.P., A sensitivity-based approach to evaluating future changes in Colorado River discharge, Clim. Change, 2014, vol. 122, pp. 621–634.

    Article  Google Scholar 

  172. Vano, J.A., Nijssen, B., and Lettenmaier, D.P., Seasonal hydrologic responses to climate change in the Pacific Northwest, Water Resour. Res., 2015, vol. 51, no. 4, pp. 1959–1976.

    Article  Google Scholar 

  173. Vetter, T. et al., Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins, Clim. Change, 2017, vol. 141, no. 3, pp. 419–433. https://doi.org/10.1007/s10584-016-1794-y

    Article  Google Scholar 

  174. Viviroli, D. et al., Increasing dependence of lowland populations on mountain water resources, Nature Sustain., 2020, vol. 3, no. 11, pp. 917–928.

    Article  Google Scholar 

  175. Vormoor, K. et al., Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway, J. Hydrol., 2016, vol. 538, pp. 33–48. https://doi.org/10.1016/j.jhydrol.2016.03.066

    Article  Google Scholar 

  176. Wang et al., Analysis of multi-dimensional hydrological alterations under climate change for four major river basins in different climate zones. Clim. Change, 2017, vol. 141, pp. 483–498. https://doi.org/10.1007/s10584-016-1843-6

    Article  Google Scholar 

  177. Warszawski, L. et al., The inter-sectoral impact model intercomparison project (ISI–MIP): project framework, Proc. Natl. Acad. Sci. 2014; vol. 111 pp. 3228–3232

    Article  Google Scholar 

  178. Westra, S., Alexander, L.V., and Zwiers, F.W. (2013), Global increasing trends in annual maximum daily precipitation, J. Climate, 20113, vol. 26, pp. 3904–3918. https://doi.org/10.1175/JCLI-D-12-00502.1

  179. Wilby, R.L., When and where might climate change be detectable in UK river flows? Geophys, Res. Let., 2006, vol. 33, no. 19, p. L19407.

    Article  Google Scholar 

  180. Wilby, R. L., Evaluating climate model outputs for hydrological applications—Opinion, Hydrolog, Sci. J., 2010, vol. 55, pp. 1090–1093.

    Article  Google Scholar 

  181. Xenarios, S., et al., Climate change and adaptation of mountain societies in Central Asia: uncertainties, knowledge gaps, and data constraints, Regional Environ. Change, 2019, vol. 19, no. 5, pp. 1339–1352. https://doi.org/10.1007/s10113-018-1384-9

    Article  Google Scholar 

  182. Yang, T. et al., Combined use of multiple drought indices for global assessment of dry gets drier and wet gets wetter paradigm, J. Climate, 2018, vol. 32. https://doi.org/10.1175/JCLI-D-18-0261.1

  183. Yang, D., Shi, X., and Marsh, P., Variability and extreme of Mackenzie River daily discharge during 1973–2011, Quat. Int. 2015, vol. 380–381, pp. 159–268. https://doi.org/10.1016/j.quaint.2014.09.023

    Article  Google Scholar 

  184. Yin, J., He, F., Xiong, Y. J., and Qiu, G.Y., Effects of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in northwest China, Hydrol. Earth Syst. Sci., 2017, vol. 21, pp. 183–196. https://doi.org/10.5194/hess-21-183-2017

    Article  Google Scholar 

  185. Zemp, M. et al., Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016, Nature, 2019, vol. 568 (7752), p. 382.

    Article  Google Scholar 

  186. Zhai, R., Tao, F., and Xu, Z., Spatial–temporal changes in runoff and terrestrial ecosystem water retention under 1.5 and 2°C warming scenarios across China, Earth Syst. Dynam., 2018, vol. 9, pp. 717–738. https://doi.org/10.5194/esd-9-717-2018

    Article  Google Scholar 

  187. Zhang, X. et al., Attributing intensification of precipitation extremes to human influence, Geophys. Res. Lett., 2013, vol. 40, pp. 5252–5257. https://doi.org/10.1002/grl.51010

    Article  Google Scholar 

  188. Zhao, T. and Dai, A., The magnitude and causes of global drought changes in the twenty-first century under a low-moderate emissions scenario, J. Climate, 2015, vol. 28, pp. 4490–4512. https://doi.org/10.1175/JCLI-D-14-00363.1

    Article  Google Scholar 

  189. Zheng, H. et al. Future climate and runoff projections across South Asia from CMIP5 global climate models and hydrological modelling, J. Hydrol.: Regional Studies, 2018, vol. 18, pp. 92–109. https://doi.org/10.1016/j.ejrh.2018.06.004

    Article  Google Scholar 

  190. Zhu, Z. et al., Greening of the Earth and its drivers, Nat. Clim. Change, 2016, vol. 6(8), pp. 791–795, 8. https://doi.org/10.1038/nclimate3004

  191. Zhuravlev, S.A., Georgievsky, V.Yu., Balonishnikova, Zh.A., and Shamin, S.I., Impacts of climate change on the natural environment, population and economy of the Russian Federation. 2.3.3 Water management, The Third assessment report on climate change and its consequences on the territory of the Russian Federation, Kattsov, V., Ed., M. Roshydromet, St. Petersburg: Sci.-intensive technol., 2022, pp. 344–356.

  192. Zolina, O., Changes in intense precipitation in Europe, Changes in Flood Risk in Europe, Z.W. Kundzewicz, Ed., IAHS Special Publication, 2012, pp. 97–120.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to Dr. Kharkhordin, Dr. Bychkova, Dr. Zhikharevich, and other colleagues from the European University at St. Petersburg for organizing a high-level meeting on climate change and its impacts on natural and social-economic systems and for inviting me to give a presentation on this meeting in March 2021. The main ideas of the presentation became the basis for this paper.

Funding

The paper was prepared within the framework of the State Assignment theme FMWZ-2022-0001 of Water Problems Institute of RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Gelfan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelfan, A.N. Climate Change and Threats to Water Security: A Review. Water Resour 50, 645–663 (2023). https://doi.org/10.1134/S0097807823600547

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807823600547

Keywords:

Navigation