Skip to main content
Log in

Hydrochemical Characteristics and Influencing Factors of Groundwater in Huanglong, a World Natural Heritage

  • HYDROCHEMISTRY, HYDROBIOLOGY: ENVIRONMENTAL ASPECTS
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Groundwater was collected from Huanglong. Analysis of hydrochemical characteristics using mathematical and statistical methods. Piper’s trilinear diagram analysis of hydrochemistry types, Gibbs diagram and ion correlation analysis were used to explore the sources of major ions in groundwater and the factors affecting the Calculation of water quality mineral saturation indices using Phreeqc Interactive to predict trends in caliche deposition. The results showed that the groundwater in the study area most of them belonged to weakly alkaline water. Groundwater cations are mainly Ca2+, anions are mainly \({\text{HCO}}_{3}^{ - }\), and the hydrochemical type is HCO3-Ca. Pearson correlation analysis of major ions showed that TDS was strongly positively correlated with Ca2+, \({\text{SO}}_{4}^{{2 - }}\) and \({\text{HCO}}_{3}^{ - }\), and all of these ions contributed to TDS. The water-rock model analysis shows that the hydrochemical genesis of groundwater in the study area is mainly controlled by rock weathering, and most of the ions are influenced by the water-rock action of carbonate rocks, and there is almost no ion-exchange action. The related research results can provide scientific references for water resources planning and allocation in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Akin, M. and Özsan, A., Evaluation of the long-term durability of yellow travertine using accelerated weathering tests, Bull. Eng. Geol. Environ., 2001, vol. 70, no. 1, pp. 101‒114.

    Article  Google Scholar 

  2. Arenas, C., Auqué, L., Osácar, C., Sancho, C., Lozano, M.V., Vázquez-Urbez, M., and Pardo, G., Current tufa sedimentation in a high discharge river: A comparison with other synchronous tufa records in the Iberian Range (Spain), Sediment. Geol., 2015, vol. 325, pp. 132‒157.

    Article  Google Scholar 

  3. Böttcher, F. and Zosseder, K., Thermal influences on groundwater in urban environments–A multivariate statistical analysis of the subsurface heat island effect in Munich, Sci. Total Environ., 2022, vol. 810.

  4. Chen, J., Zhang, D.D., Wang, S., Xiao, T., and Huang, R., Factors controlling tufa deposition in natural waters at waterfall sites, Sediment. Geol., 2004, vol. 166, nos. 3‒4, pp. 353‒366.

    Article  Google Scholar 

  5. Dai Q, W., Dang, Z., and Peng, Q.X., Porosity of travertine natural sponge geological bodies and its significance in regulating water circulation: a case study of travertine at Huanglong ravine, Sichuan Province, China, Acta Mineral. Sin., 2019, vol. 39, no. 2, pp. 219‒225.

    Google Scholar 

  6. Drysdale, R., Lucas, S., and Carthew, K., The influence of diurnal temperatures on the hydrochemistry of a tufa-depositing stream, Hydrol. Processes, 2003, vol. 17, no. 17, pp. 3421‒3441.

    Article  Google Scholar 

  7. Drysdale, R.N., Taylor, M.P., and Ihlenfeld, C., Factors controlling the chemical evolution of travertine-depositing rivers of the Barkly karst, northern Australia, Hydrol. Processes, 2002, vol. 16, no. 15, pp. 2941‒2962.

    Article  Google Scholar 

  8. Drysdale, R.N., The sedimentological significance of hydropsychid caddis-fly larvae (order; Trichoptera) in a travertine-depositing stream; Louie Creek, Northwest Queensland, Australia, J. Sediment. Res., 1999, vol. 1, pp. 145‒150.

    Article  Google Scholar 

  9. Erthal, M.M., Capezzuoli, E., Mancini, A., Claes, H., Soete, J., and Swennen, R., Shrub morpho-types as indicator for the water flow energy-Tivoli travertine case (Central Italy), Sediment. Geol., 2017, vol. 347, pp. 79‒99.

    Article  Google Scholar 

  10. Ford, T.D., A review of tufa and travertine deposits of the world, Earth-Sci. Rev., 1996, vol. 41, nos. 3–4, pp. 117‒175.

    Article  Google Scholar 

  11. Gibbs, R.J., Mechanisms controlling world water chemistry, Science, 1970, vol. 170, no. 3962, pp. 1088–1090.

    Article  Google Scholar 

  12. Hosseini, M. and Fakhri, D., Effects of acid rain on physical and mechanical properties of travertine, J. Miner. Resour. Eng., 2021, vol. 6, no. 3, pp. 83‒97.

    Google Scholar 

  13. Jiang, L., Yao, Z., Liu, Z., Wang, R., and Wu, S., Hydrochemistry and its controlling factors of rivers in the source region of the Yangtze River on the Tibetan Plateau, J. Geochem. Explor., 2015, vol. 155, pp. 76‒83.

    Article  Google Scholar 

  14. Jones, B., Renaut, R.W., Bernhart Owen, R., and Torfason, H., Growth patterns and implications of complex dendrites in calcite travertines from Lýsuhóll, Snæfellsnes, Iceland, Sedimentology, 2005, vol. 52, no. 6, pp. 1277‒1301.

    Google Scholar 

  15. Kawai, T., Kano, A., and Hori, M., Geochemical and hydrological controls on biannual lamination of tufa deposits, Sediment. Geol., 2009, vol. 213, nos. 1‒2, pp. 41‒50.

    Article  Google Scholar 

  16. Kefeni, K.K., Msagati, T.A.M., and Mamba, B.B., Acid mine drainage: prevention, treatment options, and resource recovery: a review, J. Cleaner Prod., 2017, vol. 151(MAY10), pp. 475‒493.

  17. Kpegli, K., Alassane, A., Trabelsi, R., Zouari, K., and Toro-Espitia, L.E., Geochemical processes in Kandi basin, Benin, West Africa: a combined hydrochemistry and stable isotopes approach, Quaternary Int., 2015, vol. 369, pp. 99‒109.

    Article  Google Scholar 

  18. Li, P., Tian, R., and Liu, R., Solute geochemistry and multivariate analysis of water quality in the Guohua phosphorite mine, Guizhou Province, China, Exposure Health, 2019, vol. 11, no. 2, pp. 81‒94.

    Article  Google Scholar 

  19. Li, S., Su, H., and Li, Z., Hydrochemical characteristics and groundwater quality in the thick loess deposits of China, Environ. Sci. Pollut. Res., 2022, vol. 29, no. 6, pp. 8831‒8850.

    Article  Google Scholar 

  20. Lin, Y.P. and Singer, P.C., Inhibition of calcite precipitation by orthophosphate: speciation and thermodynamic considerations, Geochim. Cosmochim. Acta, 2006, vol. 70, no. 10, pp. 2530‒2539.

    Article  Google Scholar 

  21. Liu, Y., Zhou, X., Deng, Z., Fang, B., Tsutomu, Y., Zhao, J., and Wang, X., Hydrochemical characteristics and genesis analysis of the Jifei hot spring in Yunnan, southwestern China, Geothermics, 2015, vol. 53, pp. 38‒45.

    Article  Google Scholar 

  22. Liu, Z., Li, H., You, C., Wan, N., and Sun, H., Thickness and stable isotopic characteristics of modern seasonal climate-controlled sub-annual travertine laminas in a travertine-depositing stream at Baishuitai, SW China: implications for paleoclimate reconstruction, Environ. Geol., 206, vol. 51, no. 2, pp. 257‒265.

  23. Liu, Z., Svensson, U., Dreybrodt, W., Yuan, D., and Buhmann, D., Hydrodynamic control of inorganic calcite precipitation in Huanglong ravine, China: field measurements and theoretical prediction of deposition rates, Geochem. Cosmochem. Acta, 2011, vol. 59, no. 15, pp. 3087‒3097.

    Google Scholar 

  24. Liu, Z.H., Yuan, D.X., and He, S.Y., The features of the stable carbon isotopes and geochemistry in the system of Carbonate-H2O-CO2 and their implications–Evidence from several typical karst areas of China, Acta Geol. Sin., 1997, vol. 71, no. 3, pp. 281‒288.

    Google Scholar 

  25. Lorah, M.M. and Herman, J.S., The chemical evolution of a travertine-depositing stream: Geochemical processes and mass transfer reactions, Water Resour. Res., 1988, vol. 24, no. 9, pp. 1541‒1552.

    Article  Google Scholar 

  26. Luo, L., Wen, H., Brogi, A., and Capezzuoli, E., Factors controlling the geometry of travertine mounds: Insights from Heinitang (China), Sedimentol., 2022, vol. 69, no. 4, pp. 1519‒1546.

    Article  Google Scholar 

  27. Otyukova, N.G., Hydrochemical Regime in Riverine Aqual Complexes: Case Study of the Small Il’d River (Rybinsk Reservoir Basin), Water Resour., 2019, vol. 46, no. 4, pp. 602‒604.

    Article  Google Scholar 

  28. Parkhurst, D.L., User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Water-Resour. Invest. Rep., 1999, vol. 99, no. 4259, p. 312.

  29. Parvizpour, S., Jamshidi, A., Sarikhani, R., and Ghassemi Dehnavi, A., 2The pH effect of sulfuric acid on the physico-mechanical properties of Atashkuh travertine, Central Iran, Environ. Earth Sci., 022, vol. 81, no. 5, pp. 1‒10.

  30. Pentecost, A., The quaternary travertine deposits of Europe and Asia minor, Quatern. Sci. Rev., 1995, vol. 14, no. 10, pp. 1005‒1028.

    Article  Google Scholar 

  31. Pentecost, A., Travertines, Springer, The Netherlands, 2005.

    Google Scholar 

  32. Piper, A.M., A Graphical interpretation of water analysis, Eos Trans. Am. Geophys. Union, 1944, vol. 25, pp. 914‒928.

    Article  Google Scholar 

  33. Qiu, S., Wang, F., Dong, F., Tian, F., Zhao, X., Dai, Q., and Wang, Y., Sedimentary evolution of the Dawan travertines and their geological environmental significance, Huanglong, China, The Deposit. Record, 022, vol. 8, no. 1, pp. 251‒265.

  34. Ranjbaran, M. and Zamanzadeh, S.M., Determining the role of chemical and biological factors in controlling precipitation of tufa and travertine deposits in Shurab area, Northern Iran, Carbonates Evaporites, 2021, vol. 36, no. 4, pp. 1‒18.

    Article  Google Scholar 

  35. Scholler, H., Qualitative evaluation of groundwater resources. Methods and techniques of groundwater investigations and development, Water Resour. Ser., UNESCO, 1965, pp. 54‒83.

    Google Scholar 

  36. Sun, S., Dong, F., Ehrlich, H., Zhao, X., Liu, M., Dai, Q., Li, Q., An, D., and Dong, H., Metabolic influence of psychrophilic diatoms on travertines at the Huanglong natural scenic district of China, Int. J. Environ. Res. Public Health, 2014, vol. 11, no. 12, pp. 13 084‒13 096.

    Article  Google Scholar 

  37. Tiwari, A.K. and Singh, A.K., Hydrogeochemical investigation and groundwater quality assessment of Pratapgarh district, Uttar Pradesh, J. Geol. Soc. India, 2014, vol. 83, no. 3, pp. 329‒343.

    Article  Google Scholar 

  38. Wang, H.J., Liu, Z.H., and Zheng, C., Hydrochemical variations of Huanglong spring and the stream in Huanglong ravine, Sichuan province, Geochimica, 2009, vol. 38, no. 3, pp. 307‒314.

    Google Scholar 

  39. Wang, X., Bing, H., Wu, Y., Zhou, J., Zhu, H., Wu, Y., and Sun, H., Water quality variation and its conditioning factors in the Three Gorges Reservoir, China, J. Water Clim. Change, 2021, vol. 12, no. 5, pp. 1694‒1707.

    Article  Google Scholar 

  40. Yoshimura, K., Liu, Z., Cao, J., Yuan, D., Inokura, Y., and Noto, M., Deep source CO2 in natural waters and its role in extensive tufa deposition in the Huanglong Ravines, Sichuan, China, Chem. Geol., 2004, vol. 205, nos. 1‒2, pp. 141‒153.

    Article  Google Scholar 

  41. Zhang, J., Wang, H., Liu, Z., An, D., and Dreybrodt, W., Spatial–temporal variations of travertine deposition rates and their controlling factors in Huanglong Ravine, China–A world’s heritage site, App-l. Geochem., 2012, vol. 27, no. 1, pp. 211‒222.

    Article  Google Scholar 

  42. Zhang, W., Gu, P., Zheng, X., Wang, N., and Zheng, Z., Ecological damage of submerged macrophytes by fresh cyanobacteria (fc) and cyanobacterial decomposition solution (cds), J. Hazard. Mater., 2020, vol. 401.

Download references

ACKNOWLEDGMENTS

The test data of this paper comes from Sichuan University of Science & Engineering and Keyuan Engineering Technology Testing Center of Sichuan Province, so I would like to express my heartfelt thanks to these two units.

Funding

This work was financially supported by Huanglong National Scenic Spot Administration (nos. 513220202100254, 513220202100331 and N5132112023000028), Aba Prefecture Science and Technology Bureau (R21YYJSYJ0010), and Sichuan Institute of Geological Survey (nos. SDDY-Z2022008, SCIGSCYBXM-2023004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Zeng or Xinze Liu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Zhang, J., Zhang, W. et al. Hydrochemical Characteristics and Influencing Factors of Groundwater in Huanglong, a World Natural Heritage. Water Resour 50, 619–632 (2023). https://doi.org/10.1134/S0097807823040164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807823040164

Keywords:

Navigation