Skip to main content

Advertisement

Log in

Utilizing Stable Isotopes and Major Ions to Isolate the Recharge Regime of an Alluvial-Proluvial Fan Aquifer in the Piedmont Region of the South Taihang Mountains, North China Plain

  • HYDROCHEMISTRY, HYDROBIOLOGY: ENVIRONMENTAL ASPECTS
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

A thorough understanding of groundwater recharge is critical for sustainable groundwater development in semi-arid areas. To determine the recharge regime in one alluvial-proluvial fan aquifer which usually acts as the main recharge zone of its local groundwater, field surveys and isotopic analyses were conducted in the piedmont region of the South Taihang Mountains of the North China Plain during the rainy (August) and dry (November) seasons. Precipitation could not effectively provide short-term recharge to the alluvial-proluvial fan aquifer due to the deep water table. The fault buried by the mountain front alluvial-proluvial deposits acts as a barrier, inhibiting effective recharge to the overlying Quaternary aquifer. Sulfate concentration and isotopes were more elevated in deep groundwater of the alluvial-proluvial fan area compared to that in the depression region, suggesting that lower deep groundwater potential has resulted in the inter-aquifer flow from the shallow alluvial-proluvial fan aquifer feeding the deep aquifer underneath. Inter-aquifer leakage showed an inverse relationship with the distance from the mountain edge, and its recharge may be influenced by the distribution of the aquitard in the deep aquifer of the proximal fan, leading to a decreased contribution of inter-aquifer leakage. Additionally, the deep groundwater flow in the Sha River alluvial-proluvial fan is disturbed by the hydraulic potential decline in the proximal fan region, as exhibited by a more complex flow pattern and reduced groundwater mixing zone. Our results increase understanding of piedmont hydrology and the management of its related water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Apaydin, A., Relation of tectonic structure to groundwater flow in the Beypazari region, NW Anatolia, Turkey, Hydrogeol. J., 2010, vol. 18, pp. 1343–1356. https://doi.org/10.1007/s10040-010-0605-1

    Article  Google Scholar 

  2. Bai, P., Liu, W., and Guo, M., Impacts of climate variability and human activities on decrease in streamflow in the Qinhe River, China, Theoret. Appl. Climatol., 2014, vol. 117, pp. 293–301. https://doi.org/10.1007/s00704-013-1009-7

    Article  Google Scholar 

  3. Bense, V. and Person, M., Faults as conduit-barrier systems to fluid flow in siliciclastic sedimentary aquifers, Water Resour. Res., 2006, vol. 42, W05421. https://doi.org/10.1029/2005WR004480

    Article  Google Scholar 

  4. Cao, G., Scanlon, B.R., Han, D., and Zheng, C., Impacts of thickening unsaturated zone on groundwater recharge in the North China Plain, J. Hydrol., 2016, vol. 537, pp. 260–270. https://doi.org/10.1016/j.jhydrol.2016.03.049

    Article  Google Scholar 

  5. Cao, G., Zheng, C., Scanlon, B.R., Liu, J., and Li, W., Use of flow modeling to assess sustainability of groundwater resources in the North China Plain, Water Resour. Res., 2013, vol. 49, pp. 159–175. https://doi.org/10.1029/2012WR011899

    Article  Google Scholar 

  6. Chen, J., Tang, C., Sakura, Y., Kondoh, A., Yu, J., Shimada, J., and Tanaka, T., Spatial geochemical and isotopic characteristics associated with groundwater flow in the North China Plain, Hydrol. Process., 2004, vol. 18, pp. 3133–3146. https://doi.org/10.1002/hyp.5753

    Article  Google Scholar 

  7. Cheng, Z., Su, C., Zheng, Z., Chen, Z., and Wei, W., Characterize groundwater vulnerability to intensive groundwater exploitation using tritium time-series and hydrochemical data in Shijiazhuang, North China Plain, J. Hydrol., 2021, vol. 603, 126953. https://doi.org/10.1016/j.jhydrol.2019.06.071

    Article  Google Scholar 

  8. Chowdhury, A.H., Uliana, M., and Wade, S., Ground water recharge and flow characterization using multiple isotopes, Groundwater, 2008, vol. 46, pp. 426–436. https://doi.org/10.1111/j.1745-6584.2008.00443.x

    Article  Google Scholar 

  9. Clark, I., Tracing the hydrological cycle, Environ. Isotopes Hydrogeol., 1997, pp. 35–61.

    Google Scholar 

  10. Devlin, J.F. and Sophocleous, M., The persistence of the water budget myth and its relationship to sustainability, Hydrogeol. J., 2005, vol. 13, pp. 549–554. https://doi.org/10.1007/s10040-004-0354-0

    Article  Google Scholar 

  11. Folch, A. and Mas-Pla, J., Hydrogeological interactions between fault zones and alluvial aquifers in regional flow systems, Hydrol. Process., 2008, vol. 22, pp. 3476–3487. https://doi.org/10.1002/hyp.6956

    Article  Google Scholar 

  12. Folch, A., Menció, A., Puig, R., Soler, A., and Mas-Pla, J., Groundwater development effects on different scale hydrogeological systems using head, hydrochemical and isotopic data and implications for water resources management: The Selva basin (NE Spain), J. Hydrol., 2011, vol. 403, pp. 83–102.

    Article  Google Scholar 

  13. Foster, S., Garduno, H., Evans, R., Olson, D., Tian, Y., Zhang, W., and Han, Z., Quaternary aquifer of the North China Plain—assessing and achieving groundwater resource sustainability, Hydrogeol. J., 2004, vol. 12, pp. 81–93. https://doi.org/10.1007/s10040-003-0300-6

    Article  Google Scholar 

  14. Hu, Y., Moiwo, J.P., Yang, Y., Han, S., and Yang, Y., Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigation District, North China Plain, J. Hydrol., 2010, vol. 393, pp. 219–232. https://doi.org/10.1016/j.jhydrol.2010.08.017

    Article  Google Scholar 

  15. Huang, P. and Chen, J., Recharge sources and hydrogeochemical evolution of groundwater in the coal-mining district of Jiaozuo, China, Hydrogeol. J., 2012, vol. 20, pp. 739–754. https://doi.org/10.1007/s10040-012-0836-4

    Article  Google Scholar 

  16. Jiang, J., Zhang, Y., Wegehenkel, M., Yu, Q., and Xia, J., Estimation of soil water content and evapotranspiration from irrigated cropland on the North China Plain, J. Plant Nutr. Soil Sci., 2008, vol. 171, pp. 751–761. https://doi.org/10.1002/jpln.200625179

    Article  Google Scholar 

  17. Kendy, E., Zhang, Y., Liu, C., Wang, J., and Steenhuis, T., Groundwater recharge from irrigated cropland in the North China Plain: case study of Luancheng County, Hebei Province, 1949–2000, Hydrol. Process., 2004, vol. 18, pp. 2289–2302. https://doi.org/10.1002/hyp.5529

    Article  Google Scholar 

  18. Kinzelbach, W., Bauer, P., Siegfried, T., and Brunner, P., Sustainable groundwater management–Problems and scientific tool, Episodes Int. Geological Sci., 2003, vol. 26, pp. 39–44. https://doi.org/10.18814/epiiugs/2003/v26i4/002

    Article  Google Scholar 

  19. Li, F., Pan, G., Tang, C., Zhang, Q., and Yu, J., Recharge source and hydrogeochemical evolution of shallow groundwater in a complex alluvial fan system, southwest of North China Plain, Environ. Geol., 2008, vol. 55, pp. 1109–1122. https://doi.org/10.1007/s00254-007-1059-1

    Article  Google Scholar 

  20. Li, J., Li, F., Liu, Q., and Suzuki, Y., Nitrate pollution and its transfer in surface water and groundwater in irrigated areas: a case study of the Piedmont of South Taihang Mountains, China, Environ. Sci. Process. Impacts, 2014, vol. 16, pp. 2764–2773. https://doi.org/10.1039/c4em00200h

    Article  Google Scholar 

  21. Li, J., Wang, Y., Zhu, C., Xue, X., Qian, K., Xie, X., and Wang, Y., Hydrogeochemical processes controlling the mobilization and enrichment of fluoride in groundwater of the North China Plain, Sci. Total Environ., 2020, vol. 730, pp. 138877. https://doi.org/10.1016/j.scitotenv.2020.138877

    Article  Google Scholar 

  22. Liu, C., Zhang, X., and Zhang, Y., Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter, Agric. For. Meteorol., 2002, vol. 111, pp. 109–120. https://doi.org/10.1016/S0168-1923(02)00015-1

    Article  Google Scholar 

  23. Liu, J., Song, X., Yuan, G., Sun, X., Liu, X., and Wang, S., Characteristics of δ18O in precipitation over Eastern Monsoon China and the water vapor sources, Chinese Sci. Bull., 2010, vol. 55, pp. 200–211. https://doi.org/10.1007/s11434-009-0202-7

    Article  Google Scholar 

  24. Liu, Y. and Yamanaka, T., Tracing groundwater recharge sources in a mountain–plain transitional area using stable isotopes and hydrochemistry, J. Hydrol., 2012, vol. 464, pp. 116–126. https://doi.org/10.1016/j.jhydrol.2012.06.053

    Article  Google Scholar 

  25. Lu, Y., Tang, C., Chen, J., Song, X., Li, F., and Sakura, Y., Spatial characteristics of water quality, stable isotopes and tritium associated with groundwater flow in the Hutuo River alluvial fan plain of the North China Plain, Hydrogeol. J., 2008, vol. 16, pp. 1003–1015.

    Article  Google Scholar 

  26. Ma, J., Ding, Z., Edmunds, W.M., Gates, J.B., and Huang, T., Limits to recharge of groundwater from Tibetan plateau to the Gobi Desert, implications for water management in the mountain front, J. Hydrol., 2009, vol. 364, pp. 128–141. https://doi.org/10.1016/j.jhydrol.2008.10.010

    Article  Google Scholar 

  27. Miao, J., Formation of the shallow groundwater in the Northern Henan Plain based on isotope analyses, Hydrogeol. Engin. Geol., 2010, vol. 37, pp. 5–11 (in Chinese with English abstract).

    Google Scholar 

  28. Min, L., Shen, Y., and Pei, H., Estimating groundwater recharge using deep vadose zone data under typical irrigated cropland in the piedmont region of the North China Plain, J. Hydrol., 2015, vol. 527, pp. 305–315. https://doi.org/10.1016/j.jhydrol.2015.04.064

    Article  Google Scholar 

  29. Nakaya, S., Uesugi, K., Motodate, Y., Ohmiya, I., Komiya, H., Masuda, H., and Kusakabe, M., Spatial separation of groundwater flow paths from a multi-flow system by a simple mixing model using stable isotopes of oxygen and hydrogen as natural tracers, Water Resour. Res., 2007, vol. 43. https://doi.org/10.1029/2006WR005059

  30. Praamsma, T., Novakowski, K., Kyser, K., and Hall, K., Using stable isotopes and hydraulic head data to investigate groundwater recharge and discharge in a fractured rock aquifer, J. Hydrol., 2009, vol. 366, pp. 35–45. https://doi.org/10.1016/j.jhydrol.2008.12.011

    Article  Google Scholar 

  31. Sakakibara, K., Tsujimura, M., Song, X., and Zhang, J., Spatiotemporal variation of the surface water effect on the groundwater recharge in a low-precipitation region: Application of the multi-tracer approach to the Taihang Mountains, North China, J. Hydrol., 2017, vol. 545, pp. 132–144. https://doi.org/10.1016/j.jhydrol.2016.12.030

    Article  Google Scholar 

  32. Scanlon, B.R., Keese, K.E., Flint, A.L., Flint, L.E., Gaye, C.B., Edmunds, W.M., and Simmers, I., Global synthesis of groundwater recharge in semiarid and arid regions, Hydrol. Process., 2006, vol. 20, pp. 3335–3370. https://doi.org/10.1002/hyp.6335

    Article  Google Scholar 

  33. Sun, H., Shen, Y., Yu, Q., Flerchinger, G.N., Zhang, Y., Liu, C., and Zhang, X., Effect of precipitation change on water balance and WUE of the winter wheat–summer maize rotation in the North China Plain, Agric. Water Manag., 2010, vol. 97, pp. 1139–1145. https://doi.org/10.1016/j.agwat.2009.06.004

    Article  Google Scholar 

  34. Tang, Q., Zhang, X., and Tang, Y., Anthropogenic impacts on mass change in North China, Geophys. Res. Lett., 2013, vol. 40, pp. 3924–3928. https://doi.org/10.1002/grl.50790

    Article  Google Scholar 

  35. Tsujimura, M., Abe, Y., Tanaka, T., Shimada, J., Higuchi, S., Yamanaka, T., Davaa, G., and Oyunbaatar, D., Stable isotopic and geochemical characteristics of groundwater in Kherlen River basin, a semi-arid region in eastern Mongolia, J. Hydrol., 2007, vol. 333, pp. 47–57. https://doi.org/10.1016/j.jhydrol.2006.07.026

    Article  Google Scholar 

  36. Von Rohden, C., Kreuzer, A., Chen, Z., Kipfer, R., and Aeschbach-Hertig, W., Characterizing the recharge regime of the strongly exploited aquifers of the North China Plain by environmental tracers, Water Resour. Res., 2010, vol. 46. https://doi.org/10.1029/2008WR007660

  37. Wang, P., Yu, J., Zhang, Y., and Liu, C., Groundwater recharge and hydrogeochemical evolution in the Ejina Basin, northwest China, J. Hydrol., 2013, vol. 476, pp. 72–86. https://doi.org/10.1016/j.jhydrol.2012.10.049

    Article  Google Scholar 

  38. Wang, S., Song, X., Wang, Q., Xiao, G., and Liu, C., Dynamic features of shallow groundwater in North China Plain, Acta Geogr. Sin., 2008, vol. 63, pp. 462–472. https://doi.org/10.11821/xb200805002

    Article  Google Scholar 

  39. Werner, A.D., Zhang, Q., Xue, L., Smerdon, B.D., Li, X., Zhu, X., Yu, L., and Li, L., An initial inventory and indexation of groundwater mega-depletion cases, Water Resour. Manag., 2013, vol. 27, pp. 507–533. https://doi.org/10.1007/s11269-012-0199-6

    Article  Google Scholar 

  40. Wilson, J.L. and Guan, H., Mountain-block hydrology and mountain-front recharge. Groundwater recharge in a desert environment: The Southwestern United States, 2004, vol. 9, pp. 113–137.

    Google Scholar 

  41. Wu, C., X, Q., Ma, Y., and Zhang, X., Palaeochannels on the North China Plain: palaeoriver geomorphology, Geomorphol., 1996, vol. 18, pp. 37–45. https://doi.org/10.1016/0169-555X(95)00150-4

    Article  Google Scholar 

  42. Xu, Q., Wu, C., Zhu, X., and Yang, X., Palaeochannels on the North China Plain: stage division and palaeoenvironments, Geomorphol., 1996, vol. 18, pp. 15–25. https://doi.org/10.1016/0169-555X(95)00148-X

    Article  Google Scholar 

  43. Yang, Y., Watanabe, M., Zhang, X., Hao, X., and Zhang, J., Estimation of groundwater use by crop production simulated by DSSAT-wheat and DSSAT-maize models in the piedmont region of the North China Plain, Hydrol. Process., 2006, vol. 20, pp. 2787–2802. https://doi.org/10.1002/hyp.6071

    Article  Google Scholar 

  44. Yamanaka, T., Shimada, J., Hamada, Y., Tanaka, T., Yang, Y., Zhang, W., and Hu, C., Hydrogen and oxygen isotopes in precipitation in the northern part of the North China Plain: climatology and inter-storm variability, Hydrol. Process., 2004, vol. 18, pp. 2211–2222. https://doi.org/10.1002/hyp.5525

    Article  Google Scholar 

  45. Yuan, R., Song, X., Han, D., Zhang, L., and Wang, S., Upward recharge through groundwater depression cone in piedmont plain of North China Plain, J. Hydrol., 2013, vol. 500, pp. 1–11. https://doi.org/10.1016/j.jhydrol.2013.06.056

    Article  Google Scholar 

  46. Yuan, R., Song, X., Zhang, Y., Han, D., Wang, S., and Tang, C., Using major ions and stable isotopes to characterize recharge regime of a fault-influenced aquifer in Beiyishui River Watershed, North China Plain, J. Hydrol., 2010, vol. 405, pp. 512–521. https://doi.org/10.1016/j.jhydrol.2011.05.048

    Article  Google Scholar 

  47. Yuan, R., Wang, S., Wang, P., Song, X., and Tang, C., Changes in flow and chemistry of groundwater heavily affected by human impacts in the Baiyangdian catchment of the North China Plain, Environ. Earth Sci., 2017, vol. 76, pp. 1–19. https://doi.org/10.1007/s12665-017-6918-9

    Article  Google Scholar 

  48. Zhang, D., Li, X.-D., Zhao, Z.-Q., and Liu, C.-Q., Using dual isotopic data to track the sources and behaviors of dissolved sulfate in the western North China Plain, Appl. Geochem., 2015, vol. 52, pp. 43–56. https://doi.org/10.1016/j.apgeochem.2014.11.011

    Article  Google Scholar 

  49. Zheng, W., Wang, S., Sprenger, M., Liu, B., and Cao, J. Response of soil water movement and groundwater recharge to extreme precipitation in a headwater catchment in the North China Plain, J. Hydrol., 2019b, vol. 576, pp. 466–477. https://doi.org/10.1016/j.jhydrol.2019.06.071

    Article  Google Scholar 

  50. Zhou, F., Bo, Y., Ciais, P., Dumas, P., Tang, Q., Wang, X., Liu, J., Zheng, C., Polcher, J., and Yin, Z., Deceleration of China’s human water use and its key drivers, Proc. Natl. Acad. Sci., 2020, vol. 117, pp. 7702–7711. https://doi.org/10.1073/pnas.1909902117

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their constructive comments, which have greatly improved this manuscript. The authors sincerely thank Dr. Jie Zhang for his help with field surveys.

Funding

This work was financially supported by the Tsujimura Lab at the University of Tsukuba and by the Doctoral Scientific Research Foundation (Grant number DHBK2017138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Liu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Tsujimura, M., Zhang, J. et al. Utilizing Stable Isotopes and Major Ions to Isolate the Recharge Regime of an Alluvial-Proluvial Fan Aquifer in the Piedmont Region of the South Taihang Mountains, North China Plain. Water Resour 50, 969–985 (2023). https://doi.org/10.1134/S0097807822601509

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807822601509

Keywords:

Navigation