Skip to main content
Log in

The Distribution of Dissolved Forms of Metals and Metal–Humus Complexes in Zeya Reservoir Water

  • HYDROCHEMISTRY, HYDROBIOLOGY: ENVIRONMENTAL ASPECTS
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The concentrations of dissolved metal forms and their metal–humus complexes in Zeya Reservoir water were evaluated for the first time. The water showed high concentrations of ions Fe3+, Cu2+, Zn2+, exceeding MACfish by factors 1.5–3.7, which appears to be their natural background level. It was shown that the overwhelming majority of dissolved metals (Al, Fe, Cu, Cr, V, Ni, Zn) are bound in complexes with humic acids. The share of the latter ranges from 40 to 62% of the total dissolved forms, resulting in a decrease of water detoxication. By the decreasing amount of metal ions bound into complexes with humic substances in reservoir water, the metals can be ranked as Fe > Al > Cu > Ni > Cr > V > Zn > Pb > Co > Mn > Mg ≥ Ca > Cd. Overall, the quality of the examined water is satisfactory. However, the elevated concentration of Pb2+ (1.1 MACfish) near the Gilyui R. is likely due to an anthropogenic source (the development of deposits).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Alekin, O.A., Osnovy gidrokhimii (Fundamentals of Hydrochemistry), Leningrad: Gidrometeoizdat, 1970.

  2. Amurskaya oblast’: opyt entsiklopedicheskogo slovarya (Amur Oblast: An Attempt of Encyclopedic Dictionary), Vorob’ev, V.V. and Derevyanko, A.P, Eds., Blagoveshchensk: Amurskoe otd. Khabarovskogo kn. izd., 1989.

  3. Ananko, T.V. and Fridland, V.M., The formation of mountain brown forest soils, brown-taiga soils, and podburs in Tukuringra Ridge, Pochvovedenie, 1983, no. 10, pp. 20–32.

  4. Bingam, F.T., Kosta, M., Eikhenberger, E., et al., Nekotorye voprosy toksichnosti ionov metallov (Some Issues in the Toxicity of Metal Ions), Zigelya, Kh. and Zigelya, A., Eds., Moscow: Mir, 1993.

  5. Varshal, G.M., Migration forms of fulvic acids and metals in natural waters, Extended Abstract of Doctoral (Chem.) Dissertation, Moscow: Inst. Geochem. Analyt. Chem., Russian Acad. Sci., 1994.

  6. Varshal, G.M., Velyukhanova, T.K., Koshchee-va, I.Ya., Dorofeeva, V.A., Bauchidze, N.S., Kasimova, O.G., and Makharadze, G.A., Studying chemical forms of elements in surface water, Zh. Anal. Khim., 1983, vol. 38, no. 9, pp. 1590–1600.

    Google Scholar 

  7. Vasil’ev, I.A., Kapanin, V.P., Kovtonyuk, G.P., Mel’nikov, V.D., Luzhnov, V.L., Danilov, A.P., and Sorokin, A.P., Mineral’no-syr’evaya baza Amurskoi oblasti na rubezhe vekov (Mineral Resources Base of Amur Oblast at the Turn of the Century), Vasil’ev, I.A., Ed., Blagoveshchensk: Zeya, 2000.

  8. Vorob’eva, N.M., Fedorova, E.V., and Baranova, N.I., Vanadium: the biological role, toxicology, and pharmacological application, Biosfera. Fond Nauch. Issled. XXI Veka, 2013, vol. 5, no. 1, pp. 77–81.

    Google Scholar 

  9. Vukolov, E.A., Osnovy statisticheskogo analiza. Praktikum po statisticheskim metodam i issledovaniyu operatsii s ispol’zovaniem paketov STATISTICA i EXCEL (Principles of Statistical Analysis. Practical Course on Statistical Methods and Operational Research with the Use of STATISTICA and EXCEL Packages), Moscow: Forum, 2008.

  10. Geodinamika, magmatizm i metallogeniya Vostoka Rossii (Geodynamics, Magmatism, and Metallogeny of the Eastern Russia), Book 1, Khanchuk, A.I, Ed., Vladivostok: Dal’nauka, 2006.

  11. Gordeev, V.V., Geokhimiya sistemy reka-more: monografiya (Geochemistry of the River–Sea System), Moscow: IP Matushkina I.I., 2012.

    Google Scholar 

  12. GOST (State Standard) 31 861-2012, Water. General Requirements to Sampling, Moscow: Standartinform, 2013.

  13. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii (State Geological Map of the Russian Federation), 1 : 200 000. Ser. Stanovaya. List N-52-XIV (Beregovoi), Koshkov, Yu.V., Ed., St. Petersburg: VSEGEI, 2008.

  14. Ershov, Yu.I., Zakonomernosti pochvoobrazovaniya i vyvetrivaniya v zone perekhoda ot Evraziiskogo kontinenta k Tikhomu okeanu (Regularities in Soil Formation and Weathering in the Zone of Passage from the Eurasian Continent to the Pacific Ocean), Moscow: Nauka, 1984.

  15. Ivanov, V.V., Ekologicheskaya geokhimiya elementov (Ecological Geochemistry of Elements), Moscow: Nedra, 1994, part 1.

  16. Krasyukov, V.N. and Lapin, I.A., USSR Inventor’s Certificate No. 1385041, Byull. Izobret., 1988, no. 12, p. 175.

  17. Kulakov, V.V., Kondrat’eva, L.M., and Golubeva, E.M., Geological and biogeochemical factors of higher iron and manganese concentrations in the Amur water, Tikhookean. Geol., 2010, vol. 29, no. 6, pp. 66–76.

    Google Scholar 

  18. Lapin, I.A. and Krasyukov, V.N., The role of humus substances in the processes of complex formation and migration of metals in natural waters, Vodn. Resur., 1986, no. 1, pp. 134–145.

  19. Levshina, S.I., Dissolved and suspended organic matter in the Amur and Songhua river water, Water Resour., 2008, vol. 35, no. 6, pp. 716–724.

    Article  Google Scholar 

  20. Levshina, S.I., The role of humic acids in migration of metals in river water in Amur Region, Water Resour., 2015, vol. 42, no. 6, pp. 810–820.

    Article  Google Scholar 

  21. Linnik, P.N., Zhezherya, V.A., Linnik, R.P., and Ivanchenko, Ya.S., Effect of the component composition of organic substances on the state of dissolved metal forms in surface waters, Gidrobiol. Zh., 2012, vol. 48, no. 5, pp. 97–114.

    Google Scholar 

  22. Linnik, P.N. and Nabivanets, B.I., Formy migratsii metallov v presnykh poverkhnostnykh vodakh (Metal Migration Forms in Fresh Surface Waters), Leningrad: Gidrometeoizdat, 1986.

  23. Lopatko, A.S., Karandashov, A.I., Yudina, I.M., and Piskunov, Yu.G., Water chemistry of the Zeya Reservoir 30 years after the start of its filling, Materialy vseros. nauch.-prakt. konf. “Nauchnye osnovy monitoringa vodokhranilishch” (Druzhininskie chteniya. Vyp. 2) (Proc. All-Russia Sci.-Pract. Conf. “Scientific Principles of Reservoir Monitoring”), Khabarovsk, 2005, pp. 69–71.

  24. Moiseenko, T.I., Kudryavtseva, L.P., and Gashkina, N.A., Rasseyannye elementy v poverkhnostnykh vodakh sushi (Trace Elements in Continental Surface Waters), Moscow: Nauka, 2006.

  25. Mordovin, A.M., Petrov, E.S., and Shesterkin, V.P., Gidroklimatologiya i gidrokhimiya Zeiskogo vodokhranilishcha (Hydroclimatology and Hydrochemistry of the Zeya Reservoir), Vladivostok; Khabarovsk, 1997.

    Google Scholar 

  26. Moore, J. W., and Ramamoorthy, S., 1984, Heavy Metals in Natural Waters: Applied Monitoring and Impact Assessment, New York: Springer, 1984.

    Book  Google Scholar 

  27. Perechen’ rybokhozyaistvennykh normativov: predel’no dopustimykh kontsentratsii (PDK) i orientirovochno bezopasnykh urovnei vozdeistviya (OBUV) vrednykh veshchestv dlya vody vodnykh ob’’ektov, imeyushchikh rybokhozyaistvennoe znachenie (List of Fishery Standards: Maximum Allowable Concentrations (MAC) and Safe Reference Levels of Impact (SRLI) of Hazardous Substances for Water of Water Bodies of Fishery Significance), Moscow: VNRIRO, 2010.

  28. Perminova, I.V., Analysis, classification, and forecast of the properties of humic acids, Doctoral (Chem.) Dissertation, Moscow: Moscow State University, 2000, p. 360.

  29. PND F 14.1.2:4.143-98 Kolichestvennyi khimicheskii analiz vod. Metodika vypolneniya izmerenii massovykh kontsentratsii alyuminiya, bariya, bora, zheleza, kobal’ta, margantsa, medi, nikelya, strontsiya, titana, khroma i tsinka v probakh pit’evykh i stochnykh vod metodom ISP Spektrofotometrii (Quantitative Chemical Analysis of Water. Methods for Measuring Mass Concentrations of Aluminum, Barium, Boron, Iron, Cobalt, Manganese, Copper, Nickel, Strontium, Titanium, Chrome, and Zinc in Samples of Drinking and Waste Water by ICP Spectrophotometry), Moscow: Analit. tsentr “Rossa,” 2019.

  30. RD 52.24.468-2005 Vzveshennye veshchestva i obshchee soderzhanie primesei v vodakh. Metodika vypolneniya izmerenii massovoi kontsentratsii gravimetricheskim metodom (Suspended Matter and Total Concentration of Dissolved Substances in Water. Procedure for Measuring Mass Concentration by Gravimetric Method). Developed by L.V. Boeva and A.A. Nazarova, Rostov-on-Don: Gidrokhim. Inst., 2005.

  31. Resursy poverkhnostnykh vod SSSR. Dal’nii Vostok. Verkhnii i Srednii Amur (Surface Water Resources in the USSR. Far East. Upper and Middle Amur), Muranov, A.P, Ed., Leningrad: Gidrometeoizdat, 1966, vol. 18, iss. 1.

  32. Saet, Yu.E., Revich, B.A., and Yanin, E.P., Geokhimiya okruzhayushchei sredy (Environmental Geochemistry), Moscow: Nedra, 1990.

  33. Trufanov, A.I. and Korobii, E.N., Migration of iron and trace elements in natural water in the Sredneamurskaya Depression, Prirodnye vody Dal’nego Vostoka (Natural Waters of the Far East), Stepanov, A.A and Karavanov, K.P, Eds., Khabarovsk: KhabKNII, 1973.

  34. Kharitonova, V.A. and Vakh, E.A., Rare earth elements in surface water in Amur oblast, Vest. Tomsk. Gos. Univ., 2015, no. 396, pp. 232–244.

  35. Chudaeva, V.A., Shesterkin, V.P., and Chudaev, O.V., Trace elements in surface water in Amur river basin, Water Resour., 2011, vol. 38, no. 5, pp. 650–661.

    Article  Google Scholar 

  36. Shesterkin, V.P., Salt composition of water in the Zeya Reservoir, Vod. Khoz. Rossii, 2015, no. 5, pp. 32–42.

  37. BS ISO (British Standard. International Organization of Standardization) 8245. Water quality—guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC), London: British Standard Institution, 1999.

    Google Scholar 

  38. Buchwalter, D.B., Linder, G., and Curtis, L.R., Modulation of cupric ion activity by pH and fulvic acid as determinants of toxicity in Xenopus laevis embryos and larvae, Environ. Toxicol. Chem., 1996, vol. 15, no. 4, pp. 568–573.

    Article  Google Scholar 

  39. Gaillardet, J., Viers, J., and Dupre, B., Trace Elements in River Waters, The Treatise on Geochemistry, Drever, J.I., Holland, H.D., and Turekian, K.K., Eds., Oxford: Elsevier-Pergamon, 2004, vol. 5, pp. 225–272.

    Google Scholar 

  40. Guy, R.D. and Chakrabarti C.L., Studies of metal-organic interactions in model systems pertaining to natural waters, Can. J. Chem., 1976, vol. 54, no. 16, pp. 2600–2611.

    Article  Google Scholar 

  41. Lakshman, S., Mills, R., Fang, F., et al., Use of fluorescence polarization to probe the structure and aluminum complexation of three molecular weight fractions of a soil fulvic acid, Anal. Chim. Acta, 1996, no. 321, p. 113–119.

  42. Lee, J., Complexation analysis of fresh waters by equilibrium diafiltration, Water Res., 1983, vol. 17, no. 5, pp. 501–510.

    Article  Google Scholar 

  43. Levshina, S., An assessment of metal–humus complexes in river waters of the Upper Amur basin, Russia, Environ. Monit. Assess., New York: Springer, 2018.

    Google Scholar 

  44. Levshina, S.I., Iron distribution in surface waters in the Middle and Lower Amur basin, Water Res., 2012, vol. 39, no. 4, pp. 375–383.

    Article  Google Scholar 

  45. Levshina, S. and Sirotsky, S., Organic matter distribution in the Zeya Reservoir, Central Priamurye, Russia, in Natural Organic Matter: Structure-Dynamics Innovative Applications. 17th Meeting Int. Humic Substances Society, Deligannakis, Y. and Konstantinou, I., Eds., Ioannina, Greece, 2014, pp. 68–69.

  46. Dixon, A., The speciation of trace-metals with humic compounds in natural waters, Thalassia Jugosl., 1978, vol. 14, nos. 1–2, pp. 127–145.

    Google Scholar 

  47. Olk, D.C., Bloom, P.R., Perdue, E.M., McKnight, D.M., Chen, Y., Farenhorst, A., Senesi, N., Chin, Y.-P., Schmitt-Kopplin, P., Hertkorn, N., and Harir, M., Environmental and agricultural relevance of humic fractions extracted by alkali from soils and natural waters, J. Environ. Qual., 2019, vol. 48, no. 2, pp. 217–232.

    Article  Google Scholar 

  48. Pauli, F.W., Heavy-metal humates and their behavior against hydrogen sulfide, Soil Sci., 1975, vol. 119, no. 1, pp. 98–105.

    Article  Google Scholar 

  49. Saar, R.A. and Weber, J.H., Complexation of cadmium (II) with water- and soil-derived fulvic acids: effects of pH and fulvic acid concentration, Can. J. Chem., 1979, vol. 57, no. 11, pp. 1263–1268.

    Article  Google Scholar 

  50. Sposito G., Trace metals in contaminated waters, Environ. Sci. Technol., 1981, vol. 15, no. 4, pp. 396–403.

    Article  Google Scholar 

  51. Steinberg C., Species of dissolved metals derived from oligotrophic hards water, Water Res., 1980, vol. 14, no. 9, pp. 1239–1250.

    Article  Google Scholar 

  52. Templeton G.D. and Chasteen, N.D., Vanadium-fulvic acid chemistry: conformation and binding studies by electron spin probe techniques, Geochim. Cosmochim. Acta, 1980, vol. 44, no. 5, pp. 741–752.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to N.V. Berdnikov, A.V. Shtareva (Khabarovsk Innovation–Analytical Center, Institute of Tectonics and Geophysics, Far East Branch, Russian Academy of Sciences) for their help in determining elements in surface waters and to S.Yu. Ignatenko and E.N. Ignatenko (Zeya State Natural Reserve), and colleagues from the analytical laboratory at the Zeya Reservoir for their help in the collection of field material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Levshina.

Additional information

Translated by G. Krichevets

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levshina, S.I., Matyushkina, L.A. The Distribution of Dissolved Forms of Metals and Metal–Humus Complexes in Zeya Reservoir Water. Water Resour 48, 967–976 (2021). https://doi.org/10.1134/S0097807821060105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807821060105

Keywords:

Navigation