Skip to main content
Log in

Classification and Zoning of Rivers by Their Water Regime: History, Methodology, and Perspectives

  • WATER RESOURCES AND THE REGIME OF WATER BODIES
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Among all hydrological factors, water regime characteristics have always received special attention as integral parameters of the hydrological conditions of a water body, because they can be used in various estimation and forecast procedures. This study considers the development, in both Russia and other countries, of various theories and approaches to zoning the territories by the specific features of the water regime of riv-ers. The evolution of the classification developed by the late XX century, reflects changes in the level of knowledge about river basins and the accumulation of data on their runoff formation conditions. It is shown that the development of specialized databases, containing information about the characteristics of climate and river runoff, thematic electronic GIS-projects, and maps have determined the development of modern quantitative methods. The incorporation of a large volume of hydrometeorological data, the automatization of the means for processing and interpretation of data on river runoff characteristics, software complexes, supporting databases and geoinformation technologies, and web-applications made it possible to pass from general geographic and descriptive classifications and zoning to quantitative approaches, based on rigorous calculations of runoff characteristics and the development of new criteria characterizing the specific features of river water regimes, which can be of use in various economic branches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Alekseevskii, N.I., Frolova, N.L., Antonova, M.M., and Igonina, M.I., Assessing the effect of climate changes on river water regime and flow in the Volga basin, Voda: Khim. Ekol., 2013, no. 4, pp. 3–12.

  2. Astrakhantsev, V.I., On the principles of hydrological zoning of Siberia and Far East, Izv. Sib. Otd. Akad. Nauk SSSR, 1958, no. 2.

  3. Atlas vozobnovlyaemykh vodnykh resursov Evropeiskoi chasti Rossii (Atlas of Renewable Water Resources of European Russia), Dzhamalov, R.G. and Frolova, N.L., Eds., Moscow: Roviks, 2014.

  4. Berg, L.S., Geograficheskie zony SSSR (Geographic Zones of the USSR), Moscow: Geografgiz, 1947.

  5. Brounov, P.I., The geographic regions of European Russia, in Sovremennye voprosy russkogo sel’skogo khozyaistva (k 50-letnemu yubileyu I.A. Stebuta) (Cur-rent Problems of Russian Agriculture (to the 50th Anniversary of I. A. Stebut), St. Petersburg, 1904, pp. 23–45.

  6. Vladimirov, A.M., Minimal’nyi stok rek SSSR (Minimal Flow of USSR Rivers), Leningrad: Gidrometeoizdat, 1970.

  7. Vladimirov, A.M., Ctok rek v malovodnyi period goda (River Flow in Dry Season), Leningrad: Gidrometeoizdat, 1976.

  8. Water regime of rivers in European Russia. http://carto.geogr.msu.ru/hydrograph. Accessed April 28, 2020.

  9. Evstigneev, V.M., Shenberg, N.V., Anisimova, N.V., and Zaitsev, A.A., Vodnyi rezhim rek Rossii i sopredel’nykh territorii. Karta dlya vysshikh uchebnykh zavedenii masshtaba 1 : 8 000 000 (Water Regime of Russian Rivers and Nearby Territories. Map for Institutions of Higher Education at a Scale of 1 : 800 000), Novosibirsk: Novosibirskaya kartograficheskaya fabrika Roskartografii, 2001.

  10. Voeikov, A.I., Izbrannye sochineniya (Selected Works), Moscow, 1948, vol. 1.

    Google Scholar 

  11. Volchek, A.A. and Shelest, T.A., Formation of winter floods in Belarus rivers, Uch. Zap. Ross. Gidromet. Univ., 2012, no. 25, pp. 5–19.

  12. Gidroraschety: GIS (Hydrol. Calculations: GIS), St. Petersburg: NPO Gidrotekhnologiya. http://hydrotec.spb.ru. Accessed April 28, 2020.

  13. Glushkov, V.G., Geographic-hydrological method, Izv. Gos. Gidrol. Inst., 1933, nos. 57–58, pp. 5–9.

  14. GOST (State Standard) 19179-73: Land Hydrology. Terms and Definitions, Moscow: Izd. standartov, 1988.

  15. Grigor’ev, A.A. Characteristic of the types of physiographic environment, Probl. Fiz. Geogr., 1938, no. 5, pp. 3–45.

  16. Grigor’ev, A.A. and Budyko, M.I., Classification of climates in the USSR, Izv. Akad. Nauk SSSR, Ser. Geogr., 1959, no. 3, pp. 13–19.

  17. Davydov, L.K., Classification of rivers in Central Asia by their nourishment type, Zap. Gos. Gidrol. Inst., vol. 10, Leningrad, 1933, pp. 143–151.

  18. Ermolaev, O.P., Mal’tsev, K.A., and Ivanov, M.A., Automated construction of the boundaries of basin geosystems for the Volga Federal District, Geogr. Nat. Resour., 2014, no. 3, pp. 222–228.

  19. Ermolaev, O.P., Mal’tsev, K.A., Mukharamova, S.S., Kharchenko, S.V., and Vedeneeva, E.A., Cartographic model of river basins of European Russia, Geogr. Nat. Resour., 2017, no. 2, pp. 131–138.

  20. ESIMO (Edinaya Sistema monitoringa Mirovogo Okeana) (Joint System for World Ocean Monitoring). Center of oceanographic data, VNIIGMI-MTsD. http://esimo.ru/portal/ (Accessed April 28, 2020).

  21. Zaikov, B.D., Average flow and its annual distribution in USSR territory, in Tr. NIU GUGMS, Ser. IV, Iss. 24. Leningrad, Moscow, 1946, pp. 67–95.

  22. Karta fakticheskogo urovnya vody v Finskov Zalive i reke Neve (Map of Actual Water Level in the Gulf of Finland and the Neva River), Rosgidromet. Severo-Zapadnoe UGMS, St. Petersburg, 2020. http://www.meteo.nw.ru/weather/lo_levelsd.php. Cited April 28, 2020.

  23. Kokorev, A.V., Rozhdestvenskii, A.V., and Lobanova, A.G., Programmnye sredstva avtomatizatsii inzhenernykh gidrologicheskikh raschetov. Rukovodstvo pol’zovatelya HydroStatCalc (Software Means for Automation of Engineering Hydrological Calculations. HydroStatCalc User’s Guide), St. Petersburg: GGI, 2010.

  24. Korovin, E.P. and Rozanov, A.N., Soils and vegetation of the Central Asia as a natural production force, Tr. Sredne-Aziat. Gos. Univ., Ser. XIIa, no. 17, 1938.

  25. Kuzin, P.S., Map of evaporation from the surface of river basins and water balance of the European part of the USSR, Izv. Gos.Gidrol. Inst., 1934, no. 68, pp. 38–45.

  26. Kuzin, P.S., Klassifikatsiya rek i gidrologicheskoe raionirovanie SSSR (Classification of Rivers and Hydrological Zoning of the USSR), Leningrad: Gidrometeoizdat, 1960.

  27. Lichkov, B.L., Estestvennye raiony Ukrainy (Natural Regions of Ukraine), Kiev, 1922.

    Google Scholar 

  28. Luk’yanovich, M.A., The genetic and seasonal structures of river runoff of the continents, Geogr. Nat. Resour., 2011, no. 3, pp. 267–274.

  29. L’vovich, M.I., Mirovye vodnye resursy i ikh budushchee (World Water Resources and Their Future), Moscow: Mysl’, 1974.

  30. L’vovich, M.I., Experience in classification of USSR rivers, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 1938, no. 6, pp. 58–108.

  31. L’vovich, M.I., Elementy rezhima rek zemnogo shara (Elements of River Water Regime on the Earth), Moscow: Gidrometeoizdat, 1945.

  32. Natsional'nyi atlas Rossii (National Atlas of Russia), Krayukhin, A.N. (vol. 1), Kotlyakov, V.M. (vol. 2), Eds.; Pozdnyak, G.V, Exec. Ed., Moscow: Roskartografiya, 2004, 2008.

  33. Pervukhin, M.A., Landscape studies in the USSR, Zemlevedenie, 1938, vol. 40, no. 1, pp. 66–77.

    Google Scholar 

  34. Rechnye basseiny Evropeiskoi chasti Rossii (River Basins of European Russia): Kazan Federal University, Inst. Ecol. Nat. Develop., 2015. http://bassepr.kpfu.ru. Accessed April 28, 2020.

  35. Savitskii, P.I., Geograficheskie Osobennosti Rossii (Geographic Features of Russia), P. I, 1927.

  36. Semenov-Tyan-Shanskii, V.P., Hydrological zoning of Northern Eurasia, in Tr. pervogo vseros. gidrol. s’’ezda (Proc. First Russian Hydrol. Congr.), Leningrad, 1925, pp. 150–151.

  37. Semenov-Tyan-Shanskii, V.P., Hydrological zoning of the Asian part of the USSR based on the construction of climatic zones, Izv. Gos. Gidrol. Inst., 1933, nos. 57–58, pp. 71–80.

  38. Frolova, N.L., Dzhamalov, R.G., Kireeva, M.B., Rets, E.P., Safronova, T.I., Bugrov, A.A., Telegina, A.A., and Telegina, E.A., Sovremennye resursy podzemnykh i poverkhnostnykh vod Evropeiskoi chasti Rossii: Formirovanie, raspredelenie, ispol’zovanie (Present-Day Resources of Groundwater and Surface Water in European Russia: Formation, Distribution, and Use), Moscow: GEOS, 2015.

  39. Sukachev, V.N., The idea of development and phytocenology, Sov. Bot., 1942, nos. 1–3, pp. 5–17.

  40. Troitskii, V.A., Gidrologicheskoe raionirovanie SSSR (Hydrological Zoning of the USSR), Moscow, 1948.

    Google Scholar 

  41. Tutkovskii, P.A., Prirodnaya raionizatsiya Ukrainy (Natural Zoning of Ukraine), Kiev, 1922.

    Google Scholar 

  42. Fedoseev, I.A., Istoriya problemy klassifikatsii i raionirovaniya vod sushi SSSR (The History of the Problem of Classification and Zoning of Continental Waters), Moscow, 2003.

  43. Frolova, N.L., Grigor’ev, V.Yu., Kireeva, M.B., and Kharlamov, M.A., Analysis of changes in river runoff in European Russia by remote sensing and terrestrial data, Global’nye klimaticheskie izmeneniya: regional’nye effekty, modeli, prognozy: Materialy mezhdunar. nauch.-prakt. konf. (Global Climate Changes: Regional Effects, Models, Forecasts: Proc. Intern. Sci.-Pract. Conf.), vol. 1, Voronezh, 2019, pp. 520–525.

  44. Frolova, N.L., Kireeva, M.B., Agafonova, S.A., Evstigneev, V.M., Efremova, N.A., and Povalishnikova, E.S., Annual flow distribution of lowland rivers in European territory and its variations, Vod. Khoz. Ross.: Probl., Tekhnol., Upravl., 2015, no. 4, pp. 4–20.

  45. Center of Register and Cadaster: Information System on Water Resources and Water Economy in Russian River Basins, 2014. http://gis.vodinfo.ru/. Accessed April, 28, 2020.

  46. Allchin, M., Characterisation and Classification of Hydrological Catchments in Alberta, Canada, Using Growing Self-Organising Maps, Proc. 23rd GIS Res. UK (GISRUK) Conf., Univ. Leeds, 2015, pp. 55–63. https://doi.org/10.6084/m9.figshare.1491375.

  47. AllRivers: uroven’ vody onlain [Elektronnyi resurs]. URL: https://allrivers.info. Accessed April 28, 2020.

  48. Aschwanden, H. and Weingartner, R., Die Abflussregimes der Schweiz, Bern: Geographisches Ins. Univ. Bern, Publ. Gewasserkunde, 1985, vol. 65.

    Google Scholar 

  49. Auder, B. and Fischer, A., Projection-based curve clustering, J. Stat. Comput. Simul., 2012, vol. 82, iss. 8, pp. 1145–1168. https://doi.org/10.1080/00949655.2011.572882

    Article  Google Scholar 

  50. Bejarano, M. and Marchamalo, M., Garcia de Jalon, D., Gonzalez del Tanago, M., Flow regime patterns and their controlling factors in the Ebro basin (Spain), J. Hydrol., 2010, vol. 385, p. 323. https://doi.org/10.1016/j.jhydrol.2010.03.001

    Article  Google Scholar 

  51. Berhanu, B.B., Seleshi, Y., Demisse, S.S., and Melesse, A.M., Flow regime classification and hydrological characterization: a case study of Ethiopian rivers, Water, 2015, vol. 7, pp. 3149–3165. https://doi.org/10.3390/w7063149

    Article  Google Scholar 

  52. Blöschl G., Hall J., Parajka J. et al. Changing climate shifts timing of European flood, Science, 2017, vol. 357, no. 6351, pp. 588–590. https://doi.org/10.1126/science.aan2506

    Article  Google Scholar 

  53. Blöschl, G., Hall, J., Viglione, A., et al., Changing climate both increases and decreases European river floods, Nature, 2019, no. 573, pp. 108–111.

  54. Bower, D., Hannah, D.M., and McGregor, G.R., Techniques for assessing the climatic sensitivity of river flow regimes, Hydrol. Processes, 2004, vol. 18, pp. 2515–2543.

    Article  Google Scholar 

  55. CatchX—Catchment, Water Explorer, App. URL: https://ewgis.org/catchx-global/. Accessed April 28, 2020.

  56. Dallaire, C.O., Lehner, B., Sayre, R., and Thieme, M., A multidisciplinary framework to derive global river reach classifications at high spatial resolution, Environ. Res. Lett., 2019, vol. 14, no. 2. 024003. https://doi.org/10.1088/1748-9326/AAD8E9

    Article  Google Scholar 

  57. Danielson, J.J. and Gesch, D.B., Global Multi-resolution Terrain Elevation Data 2010. (GMTED2010). U.S. Geol. Survey. 2011.

  58. Dettinger, M.D. and Diaz, H.F., Global characteristics of stream flow seasonality and variability, J. Hydrometeorol., 2000, vol. 1, pp. 289–310. https://doi.org/10.1175/1525-7541(2000)001<0289:GCOSFS>2.0.CO;2

    Article  Google Scholar 

  59. Ecrins (European catchments and rivers network system). EU Open Data Portal, European Environment Agency. URL: https://data.europa.eu/euodp/en/data/dataset/data_european-catchments-and-rivers-network. Accessed April 28, 2020.

  60. Finlayson, B.L. and McMahon, T.A., in Fluvial Geomorphology of Australia, Werner, R.F., Ed., Sydney: Acad. Press, 1988, pp. 17–40.

    Google Scholar 

  61. FluentHydro. http://185.204.0.167/portal/map.html. Accessed April 28, 2020.

  62. Gharari, S., Hrachowitz, M., Fenicia, F., and Savenije, H.H.G., Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso-scale catchment, Hydrol. Earth Syst. Sci., 2011, vol. 15, pp. 3275–3291. https://doi.org/10.5194/HESS-15-3275-2011

    Article  Google Scholar 

  63. GitHub: razmeshchenie paketnykh prilozhenii i razrabotok GitKhab. GitHub Inc., 2020. https:// github.com. Accessed April 28, 2020.

  64. GloRIC Version 1.0. www.hydrosheds.org/page/gloric. Accessed February 10, 2020.

  65. Haines, A.T., Finlayson, B.L., and McMahon, T.A., A global classification of river regimes, Appl. Geogr., 1988, vol. 8, pp. 255–272.

    Article  Google Scholar 

  66. Hydrological Atlas of Switzerland. http://www.hydrologischeratlas.ch. Accessed April 26, 2020.

  67. HydroOffice: Software for hydrology, meteorology, geoscience a data science. https:www.hydrooffice.org. Accessed April 28, 2020.

  68. HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales). https://www.hydrosheds.org//. Accessed April 28, 2020.

  69. Kennard, M.J., Pusey, B.J., Olden, J.D., Mackay, S.J., Stein, J.L., and Marsh, N., Classification of natural flow regimes in Australia to support environmental flow management, Freshwater Biol., 2010, vol. 55, pp. 171–193.

    Article  Google Scholar 

  70. Kireeva, M., Frolova, N., Rets, E., Samsonov, T., Entin, A., Kharlamov, M., Telegina, E., and Povalishnikova, E., Evaluating climate and water regime transformation in the European part of Russia using observation and reanalysis data for the 1945–2015 period, Int. J. River Basin Manag., 2019, pp. 1–12. https://doi.org/10.1080/15715124.2019.1695258

    Book  Google Scholar 

  71. Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G., Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets, Hydrol. Earth Syst. Sci., 2019, vol. 23, pp. 5089–5110.

    Article  Google Scholar 

  72. Kuentz, A., Arheimer, B., Hundecha, Y., and Wagener, T., Understanding hydrologic variability across Europe through catchment classification, Hydrol. Earth Syst. Sci., 2017, vol. 21, pp. 2863–2879.

    Article  Google Scholar 

  73. Kyoung, J.L., Bernard, A.E., Zhenxu, T., Joongdae, C., Ki-Sung, K., Suresh, M., and Dibyajyoti, T., Automated Web GIS based hydrograph analysis tool, WHAT, J. Am. Water Resour. Assoc., 2005, vol. 41, no. 6, pp. 1407–1416.

    Article  Google Scholar 

  74. Lane, B.A., Dahlke, H.E., Pasternack, G.B., and Sandoval-Solis, S., Revealing the diversity of natural hydrologic regimes in California with relevance for environmental flows applications, JAWRA, 2016, pp. 1–20. https://doi.org/10.1111/1752-1688.12504

    Book  Google Scholar 

  75. Mackay, S.J., Arthington, A.H., and James, C.S., Classification and comparison of natural and altered flow regimes to support an Australian trial of the ecological limits of hydrologic alteration framework, Ecohydrol., 2014, vol. 7, no. 6, pp. 1485–1507. https://doi.org/10.1002/ECO.1473

    Article  Google Scholar 

  76. Mathews, R. and Richter, B.D., Application of the indicators of hydrologic alteration software in environmental flow setting, JAWRA, 2007, vol. 43, pp. 1400–1413. https://doi.org/10.1111/J.1752-1688.2007.00099.x

    Article  Google Scholar 

  77. Matias, Y., Keeping people safe with AI-enabled flood forecasting. Google the Keyword, retrieved 2018-09-24. www.blog.google/products/search/helping-keep-people-safe-ai-enabled-flood-forecasting. Accessed April 28, 2020.

  78. Matti, B., Dahlke, H.E., Dieppois, B., Lawler, D.M., and Lyon, S.W., Flood seasonality across Scandinavia–evidence of a shifting hydrograph?, Hydrol. Processes, 2017, vol. 31, no. 24, pp. 4354–4370. https://doi.org/10.1002/HYP.11365

    Article  Google Scholar 

  79. Matti, B., Dahlke, H.E., and Lyon, S.W., On the variability of cold region flooding, J. Hydrol., 2016, vol. 534, pp. 669–679. https://doi.org/10.1016/j.jhydrol.2016.01.055

    Article  Google Scholar 

  80. McMahon, T., Vogel, R.M., Peel, M.C., and Pegram, G.G.S., Global stream flows–part 1: characteristics of annual stream flows, J. Hydrol., 2007, vol. 347, pp. 243–259. https://doi.org/10.1016/J.JHYDROL.2007.09.002

    Article  Google Scholar 

  81. McManamay, R.A., Orth, D.J., Dolloff, C.A., and Frimpong, E.A., A regional classification of unregulated stream flows: spatial resolution and hierarchical frameworks, River Res. Applic., 2011, vol. 28, no. 7, pp. 1019–1033. https://doi.org/10.1002/RRA.1493

    Article  Google Scholar 

  82. Merz, B., Dung, N.V., Apel, H., Gerlitz, L., Schroter, K., Steirou, E., and Vorogushyn, S., Spatial coherence of flood-rich and flood-poor periods across Germany, J. Hydrol., 2018, vol. 559, pp. 813–826. https://doi.org/10.1016/j.jhydrol.2018.02.082

    Article  Google Scholar 

  83. Mudelsee, M., Borngen, M., Tetzlaff, G., and Grunewald, U., No upward trends in the occurrence of extreme floods in central Europe, Nature, 2003, vol. 425, pp. 166–169. https://doi.org/10.1038/nature01928

    Article  Google Scholar 

  84. Hydrology: A Science of Nature, Musy, A. and Higy, C., Eds., Boca Raton, FL: Taylor & Francis Group, CRC Press, 2010. https://doi.org/10.1201/B10426

  85. Natural Resources Canada, http://www.nrcan.gc.ca/earth-sciences/resources/maps. http://www.nrcan.gc.ca/earth-sciences/resources/maps. Accessed April 2, 2020.

  86. Nevo, S.A., Summary of the Google Flood Forecasting Meets Machine Learning Workshop, Google Al Blog: The latest news from Google Al., 2019. March 18. https://ai.googleblog.com/2019/03/a-summary-of-google-flood-forecasting.html. Accessed April 28, 2020.

  87. Nováky, B. and Bálin, G., Shifts and modification of the hydrological regime under climate change in Hungary, Climate Change–Realities, Impacts over Ice Cap, Sea Level and Risks, 2013, pp. 163–190. https://doi.org/10.5772/54768

    Book  Google Scholar 

  88. Olden, J., Kennard, M., and Pusey, B., A framework for hydrologic classification with a review of methodologies and applications in ecohydrology, Ecohydrology, 2012, vol. 5, pp. 503–518. https://doi.org/10.1002/ECO.251

    Article  Google Scholar 

  89. Olden, J.D. and Poff, N.L., Redundancy and the choice of hydrologic indices for characterizing streamflow regimes, River Res. Applic., 2003, vol. 19, pp. 101–121.

    Article  Google Scholar 

  90. OpenForecast. Veb-portal po obshchedostupnomu gidrologicheskomu prognozirovaniyu (Web-portal for publicly available hydrological forecasting). https://openforecast.github.io. Accessed April, 28, 2020.

  91. Oueslati, O., De Girolamo, A.M., Abouabdillah, A., and Porto, A.L., Attempts to flow regime classification and characterisation in Mediterranean streams using multivariate analysis, Int. Workshop “Advances in Statistical Hydrology”, Taormina, Italy, 2010, pp. 1–15.

  92. Pinskwar, I., Kundzewicz, Z.W., Peduzzi, P., Brakenbridge, G.R., Stahl, K., and Hannaford, J., Changing floods in Europe, in Changes in Flood Risk in Europe, Kundzewicz, Z.W, Ed., Wallingford, UK: IAHS Press, 2012, pp. 83–96.

    Google Scholar 

  93. Poff, L. and Ward, V., Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns, Can. J. Fish. Aquat. Sci., 1989, vol. 46, pp. 1805–1817. https://doi.org/10.1139/F89-228

    Article  Google Scholar 

  94. Renard, B., Lang, M., Bois, P., Dupeyrat, A., Mestre, O., Niel, H., Sauquet, E., Prudhomme, C., Parey, S., Paquet, E., Neppel, L., and Gailhard, J., Regional methods for trend detection: assessing field significance and regional consistency, Water Resour. Res., 2008, vol. 44, p. W08419. https://doi.org/10.1029/2007WR006268

    Article  Google Scholar 

  95. Sanborn, S.C. and Bledsoe, B.P., Predicting streamflow regime metrics for ungauged streams in Colorado, Washington, and Oregon, J. Hydrol., 2006, vol. 325, pp. 241–261. https://doi.org/10.1016/j.jhydrol.2005.10.018

    Article  Google Scholar 

  96. Sawicz, K., Wagener, T., Sivapalan, M., Troch, P.A., and Carrillo, G., Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA, Hydrol. Earth Syst. Sci., 2011, vol. 15, pp. 2895–2911. https://doi.org/10.5194/hess-15-2895-2011

    Article  Google Scholar 

  97. Sjöberg, Y., Frampton, A., and Lyon, S.W., Using streamflow characteristics to explore permafrost thawing in northern Swedish catchments, Hydrogeol. J., 2013, vol. 21, no. 1, pp. 121–131. https://doi.org/10.1007/S10040-012-0932-5

    Article  Google Scholar 

  98. Snelder, T.H. and Booker, D.J., Natural flow regime classifications are sensitive to definition procedures, River Res. Applic., 2012, vol. 29, vol. 29, no. 7, pp. 822–838. https://doi.org/10.1002/RRA.2581

  99. Stahl, K., Tallaksen, L.M., Hannaford, J., and van Lanen, H.A.J., Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble, Hydrol. Earth Syst. Sci., 2012, vol. 16, pp. 2035–2047. https://doi.org/10.5194/hess-16-2035-2012

    Article  Google Scholar 

  100. The Nature Conservancy. Indicators of Hydrologic Alteration. Version 7.1. User’s manual. Virginia, Arlington, 2009.

  101. Vormoor, K., Lawrence, D., Schlichting, L., Wilson, D., and Wong, W.K., Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway, J. Hydrol., 2016, vol. 538, pp. 33–48. https://doi.org/10.1016/j.jhydrol.2016.03.066

    Article  Google Scholar 

  102. WHAT: Web-based Hydrograph Analysis Tool. https://engineering.purdue.edu/mapserve/WHAT/. Accessed April 28, 2020.

  103. Wilson, D. and Hannah, D., Spatial and temporal variability of UK river flow regimes, IAHS-AISH Publication, 2002, no. 274, pp. 457–464.

  104. Wrzesinski, D. and Sobkowiak, L., Detection of changes in flow regime of rivers in Poland, J. Hydrol. Hydromech., 2018, vol. 66, no. 1, pp. 55–64.https://doi.org/10.1515/johh-2017-0045

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, scientific project no. 19-15-50 621–Expansion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Frolova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolova, N.L., Povalishnikova, E.S. & Kireeva, M.B. Classification and Zoning of Rivers by Their Water Regime: History, Methodology, and Perspectives. Water Resour 48, 169–181 (2021). https://doi.org/10.1134/S0097807821020056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807821020056

Keywords:

Navigation